【題目】如圖1,已知□ABCD,AB∥x軸,AB=6,點(diǎn)A的坐標(biāo)為(1,﹣4),點(diǎn)D的坐標(biāo)為(﹣3,4),點(diǎn)B在第四象限,點(diǎn)P是□ABCD邊上的一個(gè)動(dòng)點(diǎn).
(1)若點(diǎn)P在邊BC上,PD=CD,求點(diǎn)P的坐標(biāo).
(2)若點(diǎn)P在邊AB,AD上,點(diǎn)P關(guān)于坐標(biāo)軸對(duì)稱的點(diǎn)Q落在直線y=x﹣1上,求點(diǎn)P的坐標(biāo).
(3)若點(diǎn)P在邊AB,AD,CD上,點(diǎn)G是AD與y軸的交點(diǎn),如圖2,過(guò)點(diǎn)P作y軸的平行線PM,過(guò)點(diǎn)G作x軸的平行線GM,它們相交于點(diǎn)M,將△PGM沿直線PG翻折,當(dāng)點(diǎn)M的對(duì)應(yīng)點(diǎn)落在坐標(biāo)軸上時(shí),求點(diǎn)P的坐標(biāo).(直接寫(xiě)出答案)
【答案】(1)點(diǎn)P坐標(biāo)為(3,4);(2)點(diǎn)P的坐標(biāo)為(﹣3,4)或(﹣1,0)或(5,﹣4)或(3,﹣4);(3)點(diǎn)P坐標(biāo)為(2,﹣4)或(﹣,3)或(﹣,4)或(,4).
【解析】試題分析:(1)點(diǎn)P在BC上,要使PD=CD,只有P與C重合;
(2)首先要分點(diǎn)P在邊AB,AD上時(shí)討論,根據(jù)“點(diǎn)P關(guān)于坐標(biāo)軸對(duì)稱的點(diǎn)Q”,即還要細(xì)分“點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)Q和點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)Q”討論,根據(jù)關(guān)于x軸、y軸對(duì)稱點(diǎn)的特征(關(guān)于x軸對(duì)稱時(shí),點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)變成相反數(shù);關(guān)于y軸對(duì)稱時(shí),相反;)將得到的點(diǎn)Q的坐標(biāo)代入直線y=x-1,即可解答;
(3)在不同邊上,根據(jù)圖象,點(diǎn)M翻折后,點(diǎn)M’落在x軸還是y軸,可運(yùn)用相似求解.
試題解析:(1)∵CD=6,∴點(diǎn)P與點(diǎn)C重合,∴點(diǎn)P的坐標(biāo)是(3,4).
(2)①當(dāng)點(diǎn)P在邊AD上時(shí),由已知得,直線AD的函數(shù)表達(dá)式為:,設(shè)P(a,-2a-2),且-3≤a≤1.
若點(diǎn)P關(guān)于x軸對(duì)稱點(diǎn)Q1(a,2a+2)在直線y=x-1上,∴2a+2=a-1,解得a=-3,此時(shí)P(-3,4).
若點(diǎn)P關(guān)于y軸對(duì)稱點(diǎn)Q2(-a,-2a-2)在直線y=x-1上,∴-2a-2=-a-1,解得a=-1,此時(shí)P(-1,0).
②當(dāng)點(diǎn)P在邊AB上時(shí),設(shè)P(a,-4),且1≤a≤7.
若點(diǎn)P關(guān)于x軸對(duì)稱點(diǎn)Q3(a,4)在直線y=x-1上,∴4=a-1,解得a=5,此時(shí)P(5,-4).
若點(diǎn)P關(guān)于y軸對(duì)稱點(diǎn)Q4(-a,-4)在直線y=x-1上,∴-4=-a-1,解得a=3,此時(shí)P(3,-4).
綜上所述,點(diǎn)P的坐標(biāo)為(-3,4)或(-1,0)或(5,-4)或(3,-4).
(3)因?yàn)橹本AD為y=-2x-2,所以G(0,-2).
①如圖,當(dāng)點(diǎn)P在CD邊上時(shí),可設(shè)P(m,4),且-3≤m≤3,則可得M′P=PM=4+2=6,M′G=GM=|m|,易證得△OGM′∽△HM′P,則,即,則OM′=,在Rt△OGM′中,由勾股定理得,,解得m=-或,則P(-,4)或(,4);
②如下圖,當(dāng)點(diǎn)P在AD邊上時(shí),設(shè)P(m,-2m-2),則PM′=PM=|-2m|,GM′=MG=|m|,易證得△OGM′∽△HM′P,則,即,則OM′=,在Rt△OGM′中,由勾股定理得,,整理得m= -,則P(-,3);
如下圖,當(dāng)點(diǎn)P在AB邊上時(shí),設(shè)P(m,-4),此時(shí)M′在y軸上,則四邊形PM′GM是正方形,所以GM=PM=4-2=2,則P(2,-4).
綜上所述,點(diǎn)P的坐標(biāo)為(2,-4)或(-,3)或(-,4)或(,4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果a,b互為相反數(shù),c,d互為倒數(shù),x的絕對(duì)值等于2,那么x2+cdx﹣a﹣b的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,AD=3,BE=1,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿路徑A→D→C→E運(yùn)動(dòng),則△APE的面積y與點(diǎn)P經(jīng)過(guò)的路徑長(zhǎng)x之間的函數(shù)關(guān)系用圖象表示大致是
( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解八年級(jí)學(xué)生的視力情況,對(duì)八年級(jí)的學(xué)生進(jìn)行了一次視力調(diào)查,并將調(diào)查數(shù)據(jù)進(jìn)行統(tǒng)計(jì)整理,繪制出如下頻數(shù)分布表和頻數(shù)分布直方圖的一部分.
視力 | 頻數(shù)(人) | 頻率 |
4.0≤x<4.3 | 20 | 0.1 |
4.3≤x<4.6 | 40 | 0.2 |
4.6≤x<4.9 | 70 | 0.35 |
4.9≤x<5.2 | a | 0.3 |
5.2≤x<5.5 | 10 | b |
(1)在頻數(shù)分布表中,a= , b=;
(2)將頻數(shù)分布直方圖補(bǔ)充完整;
(3)若視力在4.6以上(含4.6)均屬正常,求視力正常的人數(shù)占被調(diào)查人數(shù)的百分比是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一個(gè)邊長(zhǎng)不定的正方形ABCD,它的兩個(gè)相對(duì)的頂點(diǎn)A,C分別在邊長(zhǎng)為1的正六邊形一組平行的對(duì)邊上,另外兩個(gè)頂點(diǎn)B,D在正六邊形內(nèi)部(包括邊界),則正方形邊長(zhǎng)a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠C=90°,AC=3,AB=5,若以A、B、C、P四點(diǎn)為頂點(diǎn)組成一個(gè)平行四邊形,則這個(gè)平行四邊形的周長(zhǎng)為_____。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題10分)如圖,在△ABC中,AC=BC,∠ACB=90°,⊙O(圓心O在△ABC內(nèi)部)經(jīng)過(guò)B、C兩點(diǎn),交AB于點(diǎn)E,過(guò)點(diǎn)E作⊙O的切線交AC于點(diǎn)F.延長(zhǎng)CO交AB于點(diǎn)G,作ED∥AC交CG于點(diǎn)D
(1)求證:四邊形CDEF是平行四邊形;
(2)若BC=3,tan∠DEF=2,求BG的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com