如圖,在Rt△ABC中,∠BAC=90°,AB=AC=2,點(diǎn)D在BC上運(yùn)動(dòng)(點(diǎn)D不能到達(dá)點(diǎn)B、C),連接AD,作∠ADE=45°,DE交AC于E.當(dāng)△ADE為等腰三角形時(shí),線段AE的長(zhǎng)為   
【答案】分析:分類討論:當(dāng)EA=ED,△ADE為等腰三角形,由∠ADE=45°得到∠EAD=45°,∠AED=90°,則AD平分∠BAC,AD⊥BC,DE⊥AC,然后根據(jù)等腰直角三角形的性質(zhì)得到DE=AC=1;當(dāng)DA=DE,△ADE為等腰三角形,由∠ADE=45°得到∠ADB+∠EDC=180°-45°=135°,而∠EDC+∠DEC=135°,所以∠ADB=∠DEC,根據(jù)三角形相似的判定得到△ABD∽△DCE,則BD:CE=AB:DC=AD:DE,利用AD=DE得到AB=DC=2,BD=CE;由于∠BAC=90°,AB=AC=2,跟級(jí)等腰直角三角形的性質(zhì)得BC=2,所以BD=2-2=EC,然后根據(jù)AE=AC-EC進(jìn)行計(jì)算.
解答:解:當(dāng)EA=ED,△ADE為等腰三角形,
∵∠ADE=45°,
∴∠EAD=45°,∠AED=90°,
∵∠BAC=90°,
∴AD平分∠BAC,AD⊥BC,DE⊥AC,如圖,
∵AB=AC=2,
∴DE=AC=1;
當(dāng)DA=DE,△ADE為等腰三角形,如圖,
∵∠ADE=45°,
∴∠ADB+∠EDC=180°-45°=135°,
而∠EDC+∠DEC=135°,
∴∠ADB=∠DEC,
而∠B=∠C,
∴△ABD∽△DCE,
∴BD:CE=AB:DC=AD:DE,
而AD=DE,
∴AB=DC=2,BD=CE,
∵∠BAC=90°,AB=AC=2,
∴BC=AC=2,
∴BD=2-2=EC,
∴AE=AC-EC=2-(2-2)=4-2
故答案為1或4-2
點(diǎn)評(píng):本題考查了相似三角形的判定與性質(zhì):有兩組角對(duì)應(yīng)相等的兩個(gè)三角形相似;相似三角形的對(duì)應(yīng)線段的比等于相似比.也考查了等腰直角三角形的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長(zhǎng)為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案