【題目】如圖,己知△ABC,任取一點O,連接AOBO,CO,并取它們的中點D,EF,得△DEF,則下列說法:①△ABC與△DEF是位似圖形;②△ABC與△DEF是相似圖形;③△ABC與△DEF的周長比為12;④△ABC與△DEF的面積比為41. 正確的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】

根據(jù)位似圖形的性質(zhì)得出①△ABC與△DEF是位似圖形進而根據(jù)位似圖形一定是相似圖形得出②△ABC與△DEF是相似圖形,再根據(jù)周長比等于位似比以及根據(jù)面積比等于相似比的平方,即可得出答案

根據(jù)位似性質(zhì)得出:①△ABC與△DEF是位似圖形,②△ABC與△DEF是相似圖形

∵將△ABC的三邊縮小的原來的,∴△ABC與△DEF的周長比為2:1,故③選項錯誤根據(jù)面積比等于相似比的平方,∴④△ABC與△DEF的面積比為4:1.

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標系xOy中,拋物線y=ax2﹣2x+c與x軸交于點A和點B(1,0),與y軸相交于點C(0,3).

(1)求拋物線的解析式和頂點D的坐標;

(2)求證:∠DAB=∠ACB;

(3)點Q在拋物線上,且ADQ是以AD為底的等腰三角形,求Q點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=mx2﹣2mx+nm0)的頂點為A,與x軸交于B,C兩點(點B在點C左側(cè)),與y軸正半軸交于點D,連接AD并延長交x軸于E,連AC、DCSDECSAEC=34

1)求點E的坐標;

2AEC能否為直角三角形?若能,求出此時拋物線的函數(shù)表達式;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=BC=8,AO=BO,點M是射線CO上的一個動點,∠AOC=60°,則當△ABM為直角三角形時,AM的長為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E、F分別為菱形ABCDAD、CD的中點.

1)求證:BE=BF;

2)當△BEF為等邊三角形時,求證:∠D=2A.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】釣魚島是我國的神圣領(lǐng)土,中國人民維護國家領(lǐng)土完整的決心是堅定的,多年來,我國的海監(jiān)、漁政等執(zhí)法船定期開赴釣魚島巡視.某日,我海監(jiān)船(A處)測得釣魚島(B處)距離為20海里,海監(jiān)船繼續(xù)向東航行,在C處測得釣魚島在北偏東45°的方向上,距離為10海里,求AC的距離.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(﹣4,n),B1,﹣4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點.、(1)求△AOB的面積;(2)求不等式kx+b0的解集(請直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【問題原型】如圖1,在四邊形ABCD中,∠ADC=90°,AB=AC.EF分別為ACBC的中點,連結(jié)EF,DE.試說明:DE=EF

【探究】如圖2,在問題原型的條件下,當AC平分∠BAD,DEF=90°時,求∠BAD的大小

【應(yīng)用】如圖3,在問題原型的條件下,當AB=2,且四邊形CDEF是菱形時,直接寫出四邊形ABCD的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點P1,m)、Qn,1)在反比例函數(shù)y的圖象上,直線ykx+b經(jīng)過點P、Q,且與x軸、y軸的交點分別為A、B兩點.

1)求 kb的值;

2O為坐標原點,C在直線ykx+b上且ABAC,點D在坐標平面上,順次聯(lián)結(jié)點O、B、C、D的四邊形OBCD滿足:BCODBOCD,求滿足條件的D點坐標.

查看答案和解析>>

同步練習(xí)冊答案