【題目】已知:△ABC是三邊都不相等的三角形,點(diǎn)O和點(diǎn)P是這個(gè)三角形內(nèi)部兩點(diǎn).
1)如圖①,如果點(diǎn)P是這個(gè)三角形三個(gè)內(nèi)角平分線的交點(diǎn),那么∠BPC和∠BAC有怎樣的數(shù)量關(guān)系?請說明理由;
2)如圖②,如果點(diǎn)O是這個(gè)三角形三邊垂直平分線的交點(diǎn),那么∠BOC和∠BAC有怎樣的數(shù)量關(guān)系?請說明理由;
3)如圖③,如果點(diǎn)P(三角形三個(gè)內(nèi)角平分線的交點(diǎn)),點(diǎn)O(三角形三邊垂直平分線的交點(diǎn))同時(shí)在不等邊△ABC的內(nèi)部,那么∠BPC和∠BOC有怎樣的數(shù)量關(guān)系?請直接回答.

【答案】1)∠BPC=90°+BAC,理由見解析;(2)∠BOC=2BAC
,理由見解析;(34BPC-BOC=360°,理由見解析;

【解析】

1)根據(jù)三角形角平分線的性質(zhì)以及三角形內(nèi)角和定理推導(dǎo)即可;
2)根據(jù)三角形垂直平分線的性質(zhì)以及三角形內(nèi)角和定理推導(dǎo)即可;
3)結(jié)合(1)(2)的結(jié)論∠BPC=90°+BAC、∠BOC=2BAC,通過等量代換即可.

解:(1)∠BPC=90°+BAC
BP平分∠ABCCP平分∠ACB,
∴∠PBC=ABC,∠PCB=ACB,
∴∠BPC=180°-(∠PBC+PCB
=180°-ABC+ACB
=180°-(∠ABC+ACB
=180°-180°-BAC
=90°+BAC
2)∠BOC=2BAC
如圖,連接AO

∵點(diǎn)O是這個(gè)三角形三邊垂直平分線的交點(diǎn),
OA=OB=OC,
∴∠OAB=OBA,∠OAC=OCA,∠OBC=OCB,
∴∠AOB=180°-2OAB,∠AOC=180°-2OAC
∴∠BOC=360°-(∠AOB+AOC
=360°-180°-2OAB+180°-2OAC),
=2OAB+2OAC
=2BAC;
34BPC-BOC=360°,
∵點(diǎn)P為三角形三個(gè)內(nèi)角平分線的交點(diǎn),
∴∠BPC=90°+BAC
由∠BAC=2BPC-180°
點(diǎn)O為三角形三邊垂直平分線的交點(diǎn)
BOC=2BAC,
∴∠BOC=22BPC-180°=4BPC-360°,
4BPC-BOC=360°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我國民間流傳著許多詩歌形式的數(shù)學(xué)算題,這些題目敘述生動(dòng)、活潑,它們大都是關(guān)于方程和方程組的應(yīng)用題.由于詩歌的語言通俗易懂、雅俗共賞,因而一掃純數(shù)學(xué)的枯燥無味之感,令人耳目一新,回味無窮.請根據(jù)下列詩意列方程組解應(yīng)用題.

周瑜壽屬:而立之年督東吳,早逝英年兩位數(shù);十比個(gè)位正小三,個(gè)位六倍與壽符;哪位同學(xué)算得快,多少年壽屬周瑜?詩的意思是:周瑜病逝時(shí)的年齡是一個(gè)大于30的兩位數(shù),其十位上的數(shù)字比個(gè)位數(shù)字小3,個(gè)位上的數(shù)字的6倍正好等于這個(gè)兩位數(shù),求這個(gè)兩位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,FCD上一點(diǎn),EBF上一點(diǎn),連接AE、AC、DE.若AB=AC,AD=AE,∠BAC=DAE=70°,AE平分∠BAC,則下列結(jié)論中:①ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正確的個(gè)數(shù)有( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題再現(xiàn):

數(shù)形結(jié)合是解決數(shù)學(xué)問題的一種重要的思想方法,借助這種方法可將抽象的數(shù)學(xué)知識(shí)變得直觀起來并且具有可操作性,從而可以幫助我們快速解題.初中數(shù)學(xué)里的一些代數(shù)公式,很多都可以通過表示幾何圖形面積的方法進(jìn)行直觀推導(dǎo)和解釋.

例如:利用圖形的幾何意義證明完全平方公式.

證明:將一個(gè)邊長為a的正方形的邊長增加b,形成兩個(gè)矩形和兩個(gè)正方形,如圖1

這個(gè)圖形的面積可以表示成:

a+b2或 a2+2ab+b2

∴(a+b2 a2+2ab+b2

這就驗(yàn)證了兩數(shù)和的完全平方公式.

類比解決:

1)請你類比上述方法,利用圖形的幾何意義證明平方差公式.(要求畫出圖形并寫出推理過程)

問題提出:如何利用圖形幾何意義的方法證明:13+2332

如圖2,A表示1個(gè)1×1的正方形,即:1×1×113

B表示1個(gè)2×2的正方形,CD恰好可以拼成1個(gè)2×2的正方形,因此:B、C、D就可以表示2個(gè)2×2的正方形,即:2×2×223A、B、CD恰好可以拼成一個(gè)(1+2)×(1+2)的大正方形.

由此可得:13+23=(1+2232

嘗試解決:

2)請你類比上述推導(dǎo)過程,利用圖形的幾何意義確定:13+23+33   .(要求寫出結(jié)論并構(gòu)造圖形寫出推證過程).

3)問題拓廣:

請用上面的表示幾何圖形面積的方法探究:13+23+33++n3   .(直接寫出結(jié)論即可,不必寫出解題過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的網(wǎng)格中有四條線段AB、CD、EF、GH(線段端點(diǎn)在格點(diǎn)上),

選取其中三條線段,使得這三條線段能圍成一個(gè)直角三角形.

答:選取的三條線段為

只變動(dòng)其中兩條線段的位置,在原圖中畫出一個(gè)滿足上題的直角三角形(頂點(diǎn)仍在格點(diǎn),并標(biāo)上必要的字母).

答:畫出的直角三角形為△

所畫直角三角形的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DB、C三點(diǎn)在同一條直線上,∠C=50°,∠FBC=80°.問:∠DBF的平分線BEAC有怎樣的位置關(guān)系?并說明理由.

解:BEAC一定平行.

∵D、B、C三點(diǎn)在同一條直線上,

∴∠DBF+∠FBC=180° ).

∵∠FBC=80°(已知).

∴∠DBF=

∵BE平分∠DBF(已知).

).

∵∠C=50°(已知),

∴∠ =∠ ),

.(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)B、E、C、F在同一直線上,且AB=DEAC=DF,BE=CF,請將下面說明ΔABC≌ΔDEF的過程和理由補(bǔ)充完整。

解:∵BE=CF

BE+EC=CF+EC

BC=EF

在ΔABC和ΔDEF

AB=

=DF

BC=

∴ΔABC≌ΔDEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對稱軸與x軸交于點(diǎn)D.

(1)求二次函數(shù)的表達(dá)式;

(2)y軸上是否存在一點(diǎn)P,使PBC為等腰三角形.若存在,請求出點(diǎn)P的坐標(biāo);

(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線的對稱軸上運(yùn)動(dòng),當(dāng)點(diǎn)M 達(dá)點(diǎn)B時(shí),點(diǎn)MN同時(shí)停止運(yùn)動(dòng),問點(diǎn)M、N運(yùn)動(dòng)到何處時(shí),MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20筐白菜,以每筐25千克為標(biāo)準(zhǔn),超過或不足的分別用正、負(fù)數(shù)來表示.記錄如下(單位:千克)

與標(biāo)準(zhǔn)質(zhì)量的差

-3

-2

-1.5

0

1

2.5

筐數(shù)

1

4

2

3

2

8

1)這些白菜中,最重的一筐比最輕的一筐重多少千克?

2)與標(biāo)準(zhǔn)重量比較,20筐白菜總計(jì)為超過或不足多少千克?

3)若白菜每千克售價(jià)2.6元,則這20筐白菜可賣多少元?

查看答案和解析>>

同步練習(xí)冊答案