2013年5月26日,中國(guó)羽毛球隊(duì)蟬聯(lián)蘇迪曼杯團(tuán)體賽冠軍,成就了首個(gè)五連冠霸業(yè).比賽中羽毛球的某次運(yùn)動(dòng)路線可以看作是一條拋物線(如圖).若不考慮外力因素,羽毛球行進(jìn)高度y(米)與水平距離x(米)之間滿足關(guān)系,則羽毛球飛出的水平距離為     米.

5

解析試題分析:根據(jù)羽毛球飛出的水平距離即為拋物線與x軸正半軸交點(diǎn)到原點(diǎn)的距離求出即可:
當(dāng)y=0時(shí),,
解得:x1=﹣1,x2=5。
∴羽毛球飛出的水平距離為5米。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

二次函數(shù)y=﹣x2+bx+c的圖象如圖所示,則一次函數(shù)y=bx+c的圖象不經(jīng)過第  象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

拋物線y=2x2的對(duì)稱軸為               

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

在平面直角坐標(biāo)系中,拋物線軸的交點(diǎn)的個(gè)數(shù)是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

(2013年四川綿陽4分)二次函數(shù)y=ax2+bx+c的圖象如圖所示,給出下列結(jié)論:
①2a+b>0;②b>a>c;③若﹣1<m<n<1,則m+n<;④3|a|+|c|<2|b|.
其中正確的結(jié)論是   (寫出你認(rèn)為正確的所有結(jié)論序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+3與y軸交于點(diǎn)A,過點(diǎn)A與x軸平行的直線交拋物線于點(diǎn)B、C,則BC的長(zhǎng)值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,AB=10cm.點(diǎn)P從點(diǎn)A出發(fā),以5cm/s的速度從點(diǎn)A運(yùn)動(dòng)到終點(diǎn)B;同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),以3cm/s的速度從點(diǎn)C運(yùn)動(dòng)到終點(diǎn)B,連結(jié)PQ;過點(diǎn)P作PD⊥AC交AC于點(diǎn)D,將△APD沿PD翻折得到△A′PD,以A′P和PB為鄰邊作?A′PBE,A′E交射線BC于點(diǎn)F,交射線PQ于點(diǎn)G.設(shè)?A′PBE與四邊形PDCQ重疊部分圖形的面積為Scm2,點(diǎn)P的運(yùn)動(dòng)時(shí)間為ts.
(1)當(dāng)t為何值時(shí),點(diǎn)A′與點(diǎn)C重合;
(2)用含t的代數(shù)式表示QF的長(zhǎng);
(3)求S與t的函數(shù)關(guān)系式;
(4)請(qǐng)直接寫出當(dāng)射線PQ將?A′PBE分成的兩部分圖形的面積之比是1:3時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

今年5月1日起實(shí)施《青海省保障性住房準(zhǔn)入分配退出和運(yùn)營(yíng)管理實(shí)施細(xì)則》規(guī)定:公共租賃住房和廉租住房并軌運(yùn)行(以下簡(jiǎn)稱并軌房),計(jì)劃10年內(nèi)解決低收入人群住房問題.已知第x年(x為正整數(shù))投入使用的并軌房面積為y百萬平方米,且y與x的函數(shù)關(guān)系式為y=-x+5.由于物價(jià)上漲等因素的影響,每年單位面積租金也隨之上調(diào).假設(shè)每年的并軌房全部出租完,預(yù)計(jì)第x年投入使用的并軌房的單位面積租金z與時(shí)間x滿足一次函數(shù)關(guān)系如下表:

時(shí)間x(單位:年,x為正整數(shù))
 
1
 
2
 
3
 
4
 
5
 

 
單位面積租金z(單位:元/平方米)
 
50
 
52
 
54
 
56
 
58
 
 
 
 
(1)求出z與x的函數(shù)關(guān)系式;
(2)設(shè)第x年政府投入使用的并軌房收取的租金為W百萬元,請(qǐng)問政府在第幾年投入使用的并軌房收取的租金最多,最多為多少百萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:計(jì)算題

如圖所示,已知平面直角坐標(biāo)系xOy,拋物線過點(diǎn)A(4,0)、B(1,3)

【小題1】求該拋物線的表達(dá)式,并寫出該拋物線的對(duì)稱軸和頂點(diǎn)坐標(biāo);
【小題2】記該拋物線的對(duì)稱軸為直線l,設(shè)拋物線上的點(diǎn)P(m,n)在第四象限,點(diǎn)P關(guān)于直線l的對(duì)稱點(diǎn)為E,點(diǎn)E關(guān)于y軸的對(duì)稱點(diǎn)為F,若四邊形OAPF的面積為20,求m、n的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案