【題目】如圖,在矩形ABCD中,已知AB=2,點(diǎn)E是BC邊的中點(diǎn),連接AE,△AB′E和△ABE關(guān)于AE所在直線對(duì)稱,若△B′CD是直角三角形,則BC邊的長為_____.
【答案】4或2
【解析】
連接BB′,根據(jù)直角三角形的判定定理得到∠BB′C=90°,求得∠B′CD<90°,(1)如圖1,∠B′DC=90°,(2)如圖2,∠CB′D=90°,則B,B′D三點(diǎn)共線,設(shè)AE,BB′交于F,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
解:連接BB′,
∵BE=B′E=EC,
∴∠BB′C=90°,
∴∠B′CD<90°,
(1)如圖1,∠B′DC=90°,
則四邊形ABEB′和ECDB′是正方形,
∴BC=2AB=4,
(2)如圖2,∠CB′D=90°,
則B,B′D三點(diǎn)共線,
設(shè)AE,BB′交于F,
則F,B′是對(duì)角線BD的三等分點(diǎn),
∵△BCB′∽△CDB′,
∴,
∴,
∴BC=CD=2,
故答案為:4或2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A()和B(4,6),點(diǎn)P是線段AB上異于A、B的動(dòng)點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)D,交拋物線于點(diǎn)C.
(1)求拋物線的解析式;
(2)當(dāng)C為拋物線頂點(diǎn)的時(shí)候,求的面積.
(3)是否存在質(zhì)疑的點(diǎn)P,使的面積有最大值,若存在,求出這個(gè)最大值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3與x軸交于A(﹣1,0)和B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D是該拋物線的頂點(diǎn),分別連接AC、CD、AD.
(1)求拋物線的函數(shù)解析式以及頂點(diǎn)D的坐標(biāo);
(2)在拋物線上取一點(diǎn)P(不與點(diǎn)C重合)、并分別連接PA、PD,當(dāng)△PAD的面積與△ACD的面積相等時(shí),求點(diǎn)P的坐標(biāo):
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c中,函數(shù)y與自變量x的部分對(duì)應(yīng)值如表:
x | … | ﹣1 | 0 | 1 | 2 | 4 | … |
y | … | 10 | 1 | ﹣2 | 1 | 25 | … |
(1)求這個(gè)二次函數(shù)的解析式;
(2)寫出這個(gè)二次函數(shù)圖象的開口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,CA=CB,∠ACB=α(0°<α<180°).點(diǎn)P是平面內(nèi)不與A,C重合的任意一點(diǎn),連接AP,將線段AP繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)α得到線段DP,連接AD,CP.點(diǎn)M是AB的中點(diǎn),點(diǎn)N是AD的中點(diǎn).
(1)問題發(fā)現(xiàn):如圖1,當(dāng)α=60°時(shí),的值是 ,直線MN與直線PC相交所成的較小角的度數(shù)是 .
(2)類比探究:如圖2,當(dāng)α=120°時(shí),請寫出的值及直線MN與直線PC相交所成的較小角的度數(shù),并就圖2的情形說明理由.
(3)解決問題:如圖3,當(dāng)α=90°時(shí),若點(diǎn)E是CB的中點(diǎn),點(diǎn)P在直線ME上,請直接寫出點(diǎn)B,P,D在同一條直線上時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(題文)“校園詩歌大賽”結(jié)束后,張老師和李老師將所有參賽選手的比賽成績(得分均為整數(shù))進(jìn)行整理,并分別繪制成扇形統(tǒng)計(jì)圖和頻數(shù)直方圖部分信息如下:
(1)本次比賽參賽選手共有 人,扇形統(tǒng)計(jì)圖中“69.5~79.5”這一組人數(shù)占總參賽人數(shù)的百分比為 ;
(2)賽前規(guī)定,成績由高到低前60%的參賽選手獲獎(jiǎng).某參賽選手的比賽成績?yōu)?/span>78分,試判斷他能否獲獎(jiǎng),并說明理由;
(3)成績前四名是2名男生和2名女生,若從他們中任選2人作為獲獎(jiǎng)代表發(fā)言,試求恰好選中1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=+,點(diǎn)D為邊AB上一點(diǎn),連接CD.將△ACD沿直線CD翻折至△ECD,CE恰好過AB的中點(diǎn)F.連接AE交CD的延長線于點(diǎn)H,若∠ACD=15°,則DH的長為( 。
A.B.C.D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“佳佳商場”在銷售某種進(jìn)貨價(jià)為20元/件的商品時(shí),以30元/件售出,每天能售出100件.調(diào)查表明:這種商品的售價(jià)每上漲1元/件,其銷售量就將減少2件.
(1)為了實(shí)現(xiàn)每天1600元的銷售利潤,“佳佳商場”應(yīng)將這種商品的售價(jià)定為多少?
(2)物價(jià)局規(guī)定該商品的售價(jià)不能超過40元/件,“佳佳商場”為了獲得最大的利潤,應(yīng)將該商品售價(jià)定為多少?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com