如圖,直線AB、CD相交于點O,∠AOC=30°,半徑為1cm的⊙P的圓心在直線AB上,且與點O的距離為6cm.如果⊙P以1cm∕s的速度,沿由A向B的方向移動,那么______秒種后⊙P與直線CD相切.
當點P在射線OA時⊙P與CD相切,如圖,過P作PE⊥CD與E,
∴PE=1cm,
∵∠AOC=30°,
∴OP=2PE=2cm,
∴⊙P的圓心在直線AB上向右移動了(6-2)cm后與CD相切,
∴⊙P移動所用的時間=
6-2
1
=4(秒);
當點P在射線OB時⊙P與CD相切,如圖,過P作PE⊥CD與F,
∴PF=1cm,
∵∠AOC=∠DOB=30°,
∴OP=2PF=2cm,
∴⊙P的圓心在直線AB上向右移動了(6+2)cm后與CD相切,
∴⊙P移動所用的時間=
6+2
1
=8(秒).
故答案為4或8.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖(1),AB是⊙O的直徑,射線AT⊥AB,點P是射線AT上的一個動點(P與A不重合),PC與⊙O相切于C,過C作CE⊥AB于E,連接BC并延長BC交AT于點D,連接PB交CE于F.
(1)請你寫出PA、PD之間的關系式,并說明理由;
(2)請你找出圖中有哪些三角形的面積被PB分成兩等分,并加以證明;
(3)設過A、C、D三點的圓的半徑是R,當CF=
1
4
R時,求∠APC的度數(shù),并在圖(2)中作出點P.(要求尺規(guī)作圖,不寫作法,但要保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

點O到直線l的距離為5,如果以點O為圓心的圓上只有兩點到直線l的距離為2,則該圓的半徑r的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,A、B、C三點在⊙O上,
AB
=
BC
,∠1=∠2.
(1)判斷OA與BC的位置關系,并說明理由;
(2)求證:四邊形OABC是菱形;
(3)過A作⊙O的切線交CB的延長線于P,且OA=4,求△APB的周長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖半徑為R和r(R>r)的圓O1與圓O2相交,公切線AB與連心線的夾角為30°,則公切線AB的長為(  )
A.
1
2
(R-r)
B.
3
3
(R-r)
C.
3
(R-r)
D.2(R-r)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,形如量角器的半圓O的直徑DE=12cm,形如三角板的△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm半圓O以2cm/s的速度從左向右運動,在運動過程中,點D、E始終在直線BC上.設運動時間為t(s),當t=0s時,半圓O在△ABC的左側(cè),OC=8cm.當t為何值時,△ABC的一邊所在直線與半圓O所在的圓相切?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,BC切⊙O于點B,連接CO并延長交⊙O于點D、E,連接AD并延長交BC于點F.
(1)試判斷∠CBD與∠CEB是否相等,并證明你的結(jié)論;
(2)求證:
BD
BE
=
CD
BC

(3)若BC=
3
2
AB,求tan∠CDF的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,AB、AC、ED分別切⊙O于點B、C、D,且AC⊥DE于E,BC的延長線交直線DE于點F.若BC=24,sin∠F=
3
5

(1)求EF的長;
(2)試判斷直線AB與CD是否平行?若平行,給出證明;若不平行,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知AB=AC,以AB為直徑的圓O交邊BC于點D,過點D作DE⊥AC,垂足為點E.
(1)求證:DE是圓O的切線;
(2)如果∠BAC=120°,求證:DE=
1
4
BC.

查看答案和解析>>

同步練習冊答案