求21000除以13的余數(shù).
因?yàn)橐粋(gè)數(shù)字m如果能被13除余1的話,它就可以寫(xiě)成 m=13n+1這種形式.
那么根據(jù)題意它再乘以2之后就是26m+2,
這個(gè)數(shù)被13除后的余數(shù)顯然是2,又會(huì)跟第一個(gè)數(shù)的余數(shù)相同了.
所以這個(gè)數(shù)對(duì)應(yīng)的次方就是余數(shù)變化的一個(gè)周期.
首先從2開(kāi)始,2除以13的余數(shù)是2;2的2次方是4,余數(shù)是4;按照這個(gè)方法一直找下去,
發(fā)現(xiàn)第12個(gè)數(shù)也就是2的12次方被13除后余1,所以12是余數(shù)變化的周期.
接下來(lái)把1000除以12后得到余數(shù)是4,因此2的1000次方除以13的余數(shù)是與2的4次方除以13的余數(shù)相同.
∵2的4次方也就是16,除以13余數(shù)為3.
故21000除以13的余數(shù)為3.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、求21000除以13的余數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案