【題目】已知直線CD⊥AB于點(diǎn)O,∠EOF=90°,射線OP平分∠COF.

(1)如圖1,∠EOF在直線CD的右側(cè):

①若∠COE=30°,求∠BOF和∠POE的度數(shù);

②請(qǐng)判斷∠POE與∠BOP之間存在怎樣的數(shù)量關(guān)系?并說明理由.

(2)如圖2,∠EOF在直線CD的左側(cè),且點(diǎn)E在點(diǎn)F的下方:

①請(qǐng)直接寫出∠POE與∠BOP之間的數(shù)量關(guān)系;

②請(qǐng)直接寫出∠POE與∠DOP之間的數(shù)量關(guān)系.

【答案】1BOF= 30°,∠POE=30°,②∠POE∠BOP2①∠POE∠BOP②∠POE+∠DOP270°

【解析】

1)①根據(jù)余角的性質(zhì)得到∠BOF=∠COE30°,求得∠COF90°+30°=120°,根據(jù)角平分線的定義即可得到結(jié)論;

②根據(jù)垂線的性質(zhì)和角平分線的定義即可得到結(jié)論;

2)①根據(jù)角平分線的定義得到∠COP=∠POF,求得∠POE90°+POF,∠BOP90°+COP,于是得到∠POE=∠BOP;

②根據(jù)周角的定義即可得到結(jié)論.

(1)①∵CD⊥AB,

∴∠COB=90°,

∵∠EOF=90°,

∴∠COE+∠BOE=∠BOE+∠BOF=90°,

∴∠BOF=∠COE=30°,

∴∠COF=90°+30°=120°,

∵OP平分∠COF,

∴∠COP=∠COF=60°,

∴∠POE=∠COP﹣∠COE=30°;

②CD⊥AB,

∴∠COB=90°,

∵∠EOF=90°,

∴∠COE+∠BOE=∠BOE+∠BOF=90°,

∴∠BOF=∠COE,

∵OP平分∠COF,

∴∠COP=∠POF,

∴∠POE=∠COP﹣∠COE,∠BOP=∠POF﹣∠BOF,

∴∠POE=∠BOP;

(2)①∵∠EOF=∠BOC=90°,

∵PO平分∠COF,

∴∠COP=∠POF,

∴∠POE=90°+∠POF,∠BOP=90°+∠COP,

∴∠POE=∠BOP;

②∵∠POE=∠BOP,∠DOP+∠BOP=270°,

∴∠POE+∠DOP=270°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】科技改變生活,手機(jī)導(dǎo)航極大方便了人們的出行,如圖,小明一家自駕到古鎮(zhèn)C游玩,到達(dá)A地后,導(dǎo)航顯示車輛應(yīng)沿北偏西60°方向行駛4千米至B地,再沿北偏東45°方向行駛一段距離到達(dá)古鎮(zhèn)C,小明發(fā)現(xiàn)古鎮(zhèn)C恰好在A地的正北方向,求B,C兩地的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動(dòng)點(diǎn)A從原點(diǎn)出發(fā)向數(shù)軸負(fù)方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)B也從原點(diǎn)出發(fā)向數(shù)軸正方向運(yùn)動(dòng),2秒后,兩點(diǎn)相距16個(gè)單位長度,已知?jiǎng)狱c(diǎn)AB的速度比為1:3(速度單位:1個(gè)單位長度秒).

(1)求兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)的速度;

(2)在數(shù)軸上標(biāo)出AB兩點(diǎn)從原點(diǎn)出發(fā)運(yùn)動(dòng)2秒時(shí)的位置;

(3)若表示數(shù)0的點(diǎn)記為OA、B兩點(diǎn)分別從(2)中標(biāo)出的位置同時(shí)向數(shù)軸負(fù)方向運(yùn)動(dòng),再經(jīng)過多長時(shí)間,滿足OB=2OA?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DE分別是AB、AC的中點(diǎn),過點(diǎn)EEF∥AB,交BC于點(diǎn)F

1)求證:四邊形DBFE是平行四邊形;

2)當(dāng)△ABC滿足什么條件時(shí),四邊形DBEF是菱形?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD交于點(diǎn)O,OMAB,

1)若∠1=2,試判斷ONCD的位置關(guān)系,并說明理由.

2)若∠1=BOC,試求∠MOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于點(diǎn)O,OEABOFCD.

(1)OC恰好是∠AOE的平分線,則OA是∠COF的平分線嗎?請(qǐng)說明理由;

(2)若∠EOF5BOD,求∠COE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國三國時(shí)期數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱其為“趙爽弦圖”,如圖1所示.在圖2中,若正方形ABCD的邊長為14,正方形IJKL的邊長為2,且IJ//AB,則正方形EFGH的邊長為.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次課題學(xué)習(xí)中,老師讓同學(xué)們合作編題.某學(xué)習(xí)小組受趙爽弦圖的啟發(fā),編寫了下面這道題,請(qǐng)你來解一解.
如圖,將矩形ABCD的四邊BA、CB、DC、AD分別延長至E、F、G、H,使得AE=CG,BF=DH,連結(jié)EF、FG、GH、HE.

(1)求證:四邊形EFGH為平行四邊形;
(2)若矩形ABCD是邊長為1的正方形,且∠FEB=45°,tan∠AEH=2,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰直角△ABC,點(diǎn)P是斜邊BC上一點(diǎn)(不與B,C重合),PE是△ABP的外接圓⊙O的直徑

(1)求證:△APE是等腰直角三角形;
(2)若⊙O的直徑為2,求 的值

查看答案和解析>>

同步練習(xí)冊(cè)答案