【題目】某商場為吸引顧客,設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,并規(guī)定每購買元商品可以獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會,如果轉(zhuǎn)盤停止轉(zhuǎn)動時,指針正好落在紅、綠、黃區(qū)域,那么顧客可以分別獲得元、元、元購物券,如果不愿轉(zhuǎn)動轉(zhuǎn)盤,那么可以直接獲得元購物券,設(shè)轉(zhuǎn)盤停止轉(zhuǎn)動時,指針正好落在紅、綠、黃區(qū)域的概率依次為,,

(1)平均來說,每轉(zhuǎn)動轉(zhuǎn)盤次所獲得購物券的金額是多少?

(2)小明在家也做了一個同樣的試驗,轉(zhuǎn)動轉(zhuǎn)盤次后共得購物前元,據(jù)此,小明認為,還是直接領(lǐng)取元購物券合算,你同意他的說法嗎?

【答案】(1)平均來說,每轉(zhuǎn)動轉(zhuǎn)盤次所獲得購物券的金額是元;(2)轉(zhuǎn)動轉(zhuǎn)盤合算.

【解析】

(1)由落在紅、綠、黃區(qū)域的概率依次為0.1,0.15,0.25,即可得平均來說,每轉(zhuǎn)動轉(zhuǎn)盤1次所獲得購物券的金額是:0.1×80+0.15×30+0.25×10=8+4.5+2.5;

(2)由平均來說,每轉(zhuǎn)動轉(zhuǎn)盤1次所獲得購物券的金額是15元>10元購物券,可知轉(zhuǎn)動轉(zhuǎn)盤合算.

∵指針正好落在紅、綠、黃區(qū)域的概率依次為,,

(元),

∴平均來說,每轉(zhuǎn)動轉(zhuǎn)盤次所獲得購物券的金額是元;

不同意.

∵平均來說,每轉(zhuǎn)動轉(zhuǎn)盤次所獲得購物券的金額是元購物券,

∴轉(zhuǎn)動轉(zhuǎn)盤合算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,以AD為底邊作等腰△ADE,將△ADE沿DE折疊,點A落到點F處,連接EF剛好經(jīng)過點C,再連接AF,分別交DE于點G,交CD于點H,下列結(jié)論:①△ABM≌△DCN;②∠DAF=30°;③△AEF是等腰直角三角形;④EC=CF;⑤,其中正確的有__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩個一元二次方程:M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四個結(jié)論中正確的是_____(填寫序號).

①如果方程M有兩個不相等的實數(shù)根,那么方程N也有兩個不相等的實數(shù)根;

②如果方程M有兩根符號相同,那么方程N的兩根符號也相同;

③如果方程M和方程N有一個相同的根,那么這個根必是x=1;

④如果5是方程M的一個根,那么是方程N的一個根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角三角形ABC的直角邊的長是a,ADBD,且AD3BD,則BCD的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AC平分∠DABAC2=ABAD,ADC=90°EAB的中點.

1)求證:ADC∽△ACB;

2CEAD有怎樣的位置關(guān)系?試說明理由;

3)若AD=4AB=6,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知CADCEB都是等邊三角形,BD、EA的延長線相交于點F

1)求證:ACE≌△DCB

2)求∠F的度數(shù).

3)若ADBD,請直接寫出線段EF與線段BDDF之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在練習(xí)操控航拍無人機,該型號無人機在上升和下落時的速度相同,設(shè)無人機的飛行高度為y(米),小明操控?zé)o人飛機的時間為x(分),yx之間的函數(shù)圖象如圖所示.

(1)無人機上升的速度為   /分,無人機在40米的高度上飛行了   分.

(2)求無人機下落過程中,yx之間的函數(shù)關(guān)系式.

(3)求無人機距地面的高度為50米時x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究

(1)如圖①,已知正方形ABCD的邊長為4.點MN分別是邊BCCD上兩點,且BMCN,連接AMBN,交于點P.猜想AMBN的位置關(guān)系,并證明你的結(jié)論.

(2)如圖②,已知正方形ABCD的邊長為4.點MN分別從點BC同時出發(fā),以相同的速度沿BCCD方向向終點CD運動.連接AMBN,交于點P,求APB周長的最大值;

問題解決

(3)如圖③,AC為邊長為2的菱形ABCD的對角線,∠ABC=60°.點MN分別從點B、C同時出發(fā),以相同的速度沿BC、CA向終點CA運動.連接AMBN,交于點P.求APB周長的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘輪船在A處測得燈塔P位于其東北方向上,輪船沿正東方向航行30海里到達B處后,此時測得燈塔P位于其北偏東30°方向上,此時輪船與燈塔P的距離是( 。┖@铮

A. 15+15 B. 30+30 C. 45+15 D. 60

查看答案和解析>>

同步練習(xí)冊答案