【題目】如圖,是直線上的一點(diǎn),是任意一條射線,平分,平分.

(1)圖中的補(bǔ)角為 ;

(2),求的度數(shù);

(3)存在怎樣的數(shù)量關(guān)系?

【答案】(1) ; (2) =60°; (3) .

【解析】

(1)根據(jù)互為補(bǔ)角的和等于180°找出即可;
(2)先求出∠AOC的度數(shù),再根據(jù)角平分線的定義解答;
(3)根據(jù)角平分線的定義表示出∠COD與∠EOC,然后整理即可得解.

(1)BOC的補(bǔ)角為∠AOC;


(2)∵∠BOC=60°,

∴∠AOC=180°BOC=180°60°=120°,

OE平分∠AOC,

∴∠AOE= AOC=×120°=60°


(3)OD平分∠BOC,OE平分∠AOC,

∴∠COD=BOC,EOC=AOC,

∴∠COD+EOC= (BOC+AOC)= ×180°=90°

∴∠COD與∠EOC互余。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了更好的開(kāi)展“學(xué)校特色體育教育”,從全校八年級(jí)各班隨機(jī)抽取了60學(xué)生,進(jìn)行各項(xiàng)體育項(xiàng)目的測(cè)試,了解他們的身體素質(zhì)情況.下表是整理樣本數(shù)據(jù),得到的關(guān)于每個(gè)個(gè)體的測(cè)試成績(jī)的部分統(tǒng)計(jì)表、圖: 某校60名學(xué)生體育測(cè)試成績(jī)成績(jī)統(tǒng)計(jì)表

成績(jī)

劃記

頻數(shù)

頻率

優(yōu)秀

正正正

a

0.3

良好

正正正正正正

30

b

合格

9

0.15

不合格

c

d

合計(jì)

(說(shuō)明:40﹣55分為不合格,55﹣70分為合格,70﹣85分為良好,85﹣100分為優(yōu)秀)
請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:

(1)表中的a=;b=;c=;d=
(2)請(qǐng)根據(jù)頻數(shù)分布表,畫(huà)出相應(yīng)的頻數(shù)分布直方圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),與y軸相交于(0, ),點(diǎn)A坐標(biāo)為(﹣1,2),點(diǎn)B是點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn),點(diǎn)C在x軸的正半軸上.

(1)求該拋物線的函數(shù)關(guān)系表達(dá)式.
(2)點(diǎn)F為線段AC上一動(dòng)點(diǎn),過(guò)F作FE⊥x軸,F(xiàn)G⊥y軸,垂足分別為E、G,當(dāng)四邊形OEFG為正方形時(shí),求出F點(diǎn)的坐標(biāo).
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當(dāng)點(diǎn)E和點(diǎn)C重合時(shí)停止運(yùn)動(dòng),設(shè)平移的距離為t,正方形的邊EF與AC交于點(diǎn)M,DG所在的直線與AC交于點(diǎn)N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求t的值;若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠ABC=45°,CDABD,BE平分∠ABC,且BEACE,與CD相交于點(diǎn)F,DHBCH,交BEG,下列結(jié)論中正確的是(  )

①△BCD為等腰三角形;②BF=AC;CE=BF;BH=CE.

A. ①② B. ①③ C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】七年級(jí)班想買(mǎi)一些運(yùn)動(dòng)器材供班上同學(xué)陽(yáng)光體育活動(dòng)使用,班主任安排班長(zhǎng)去商店買(mǎi)籃球和排球,下面是班長(zhǎng)與售貨員的對(duì)話:

班長(zhǎng)阿姨,您好! 售貨員同學(xué),你好,想買(mǎi)點(diǎn)什么?

根據(jù)這段對(duì)話,你能算出籃球和排球的單價(jià)各是多少嗎?

六一兒童節(jié)店里搞活動(dòng)有兩種套餐,1、套裝打折:五個(gè)籃球和五個(gè)排球?yàn)橐惶籽b,套裝打 八折:2、滿減活動(dòng):999 100,1999 200;兩種活動(dòng)不重復(fù)參與,學(xué)校需要 15個(gè)籃球,13 個(gè)排球作為獎(jiǎng)品請(qǐng)問(wèn)如何安排購(gòu)買(mǎi)更劃算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】復(fù)習(xí)全等三角形的知識(shí)時(shí),老師布置了一道作業(yè)題:

如圖①,已知ABC中,AB=AC,PABC內(nèi)任意一點(diǎn),AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)至AQ,使∠QAP=BAC,連接BQ,CP,BQ=CP.”

小亮是個(gè)愛(ài)動(dòng)腦筋的同學(xué),他通過(guò)對(duì)圖①的分析,證明了ABQ≌△ACP,從而證得BQ=CP之后,他將點(diǎn)P移到等腰三角形ABC原題中其他條件不變,發(fā)現(xiàn)“BQ=CP”仍然成立,請(qǐng)你就圖②給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有20箱橘子,以每箱25千克為標(biāo)準(zhǔn),超過(guò)或不足的千克數(shù)分別用正、負(fù)數(shù)來(lái)表示,記錄如下:

與標(biāo)準(zhǔn)質(zhì)量的差值

(單位:千克)

3

2

1.5

0

1

2.5

箱數(shù)

1

4

2

3

2

8

(1)20箱橘子中,最重的一箱比最輕的一箱多重多少千克?

(2)與標(biāo)準(zhǔn)重量比較,20箱橘子總計(jì)超過(guò)或不足多少千克?

(3)若橘子每千克售價(jià)2.5元,則出售這20箱橘子可賣(mài)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=9,AB=15,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AC→CB→BA邊運(yùn)動(dòng),點(diǎn)P在AC、CB、BA邊上運(yùn)動(dòng)的速度分別為每秒3、4、5個(gè)單位,直線l從與AC重合的位置開(kāi)始,以每秒 個(gè)單位的速度沿CB方向移動(dòng),移動(dòng)過(guò)程中保持l∥AC,且分別與CB,AB邊交于E,F(xiàn)兩點(diǎn),點(diǎn)P與直線l同時(shí)出發(fā),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)點(diǎn)P第一次回到點(diǎn)A時(shí),點(diǎn)P和直線l同時(shí)停止運(yùn)動(dòng).

(1)當(dāng)t=秒時(shí),△PCE是等腰直角三角形;
(2)當(dāng)點(diǎn)P在AC邊上運(yùn)動(dòng)時(shí),將△PEF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn),使得點(diǎn)P的對(duì)應(yīng)點(diǎn)P1落在EF上,點(diǎn)F的對(duì)應(yīng)點(diǎn)為F1 , 當(dāng)EF1⊥AB時(shí),求t的值;
(3)作點(diǎn)P關(guān)于直線EF的對(duì)稱點(diǎn)Q,在運(yùn)動(dòng)過(guò)程中,若形成的四邊形PEQF為菱形,求t的值;
(4)在整個(gè)運(yùn)動(dòng)過(guò)程中,設(shè)△PEF的面積為S,請(qǐng)直接寫(xiě)出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)最重要的著作,其中,方程術(shù)是《九章算術(shù)》最高的數(shù)學(xué)成就.《九章算術(shù)》中記載:“今有人共買(mǎi)雞,人出九,盈十一;人出六,不足十六.問(wèn)人數(shù)、雞價(jià)各幾何?”譯文:“假設(shè)有幾個(gè)人共同出錢(qián)買(mǎi)雞,如果每人出九錢(qián),那么多了十一錢(qián);如果每人出六錢(qián),那么少了十六錢(qián).問(wèn):有幾個(gè)人共同出錢(qián)買(mǎi)雞?雞的價(jià)錢(qián)是多少?”設(shè)有x個(gè)人共同買(mǎi)雞,根據(jù)題意列一元一次方程,正確的是( 。

A. 9x﹣11=6x+16 B. 9x+11=6x﹣16 C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案