【題目】如圖:已知在等邊三角形ABC中,點D、E分別是AB、BC延長線上的點,且BD=CE,直線CD與AE相交于點F.

(1)求證:DC=AE;

(2)求證:AD2=DCDF.

【答案】(1)證明見解析(2)證明見解析

【解析】

(1)利用SAS證明DBC≌△ECA即可;

(2)由DBC≌△ECA可知ED,根據(jù)外角定理可知AFC=E+FCE=D+BCD=ABC=60°,可證DCA∽△DAF,利用相似比得出結(jié)論.

(1)∵△ABC是等邊三角形,

∴∠ABC=ACB=BAC=60°,BC=CA

∴∠DBC=ECA=180°﹣60°=120°

DBCECA

∴△DBC≌△ECA(SAS)

DC=AE;

(2)∵△DBC≌△ECA,

∴∠DCB=EAC

又∠ACB=BAC

∴∠DCA=DAF

又∠D=D

∴△DCA∽△DAF

AD2=DCDF.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c的圖象如圖,則下列結(jié)論:①abc0;②a+b+c=2;③b24ac0;④b2a.其中正確的結(jié)論是( 。

A. ①② B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小穎同學(xué)學(xué)完統(tǒng)計知識后隨機調(diào)查了她所在轄區(qū)若干名居民的年齡,將調(diào)查數(shù)據(jù)繪制成如下扇形和條形統(tǒng)計圖

請根據(jù)以上不完整的統(tǒng)計圖提供的信息,解答下列問題

(1)小穎同學(xué)共調(diào)查了多少名居民的年齡,扇形統(tǒng)計圖中ab各等于多少?

(2)補全條形統(tǒng)計圖;

(3)若該轄區(qū)年齡在0~14歲的居民約有1500,請估計年齡在15~59歲的居民的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC與△ADE中,∠C=∠AED=90°,點EAB上,那么添加下列一個條件后,仍無法判定△ABC∽△DAE的是(

A. B. B =∠D C. ADBC D. BAC=∠D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】家用電滅蚊器的發(fā)熱部分使用了PTC發(fā)熱材料,它的電阻R)隨溫度t)(在一定范圍內(nèi))變化的大致圖象如圖所示.通電后,發(fā)熱材料的溫度在由室溫10上升到30的過程中,電阻與溫度成反比例關(guān)系,且在溫度達到30時,電阻下降到最小值;隨后電阻隨溫度升高而增加,溫度每上升1,電阻增加

(1)求當(dāng)10≤t≤30時,Rt之間的關(guān)系式;

(2)求溫度在30℃時電阻R的值;并求出t≥30時,Rt之間的關(guān)系式;

(3)家用電滅蚊器在使用過程中,溫度在什么范圍內(nèi)時,發(fā)熱材料的電阻不超過6 kΩ?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果一條直線與一條曲線有且只有一個交點,且曲線位于直線的同旁,稱之為直線與曲線相切,這條直線叫做曲線的切線,直線與曲線的唯一交點叫做切點.

1)如圖,在平面直角坐標(biāo)系中,點為坐標(biāo)原點,以點為圓心,5為半徑作圓,交軸的負(fù)半軸于點,求過點的圓 的切線的解析式;

2)若拋物線)與直線)相切于點,求直線的解析式;

3)若函數(shù)的圖象與直線相切,且當(dāng)時,的最小值為,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12分)如圖,ABC內(nèi)接于O,AB=AC,BD為O的弦,且ABCD,過點A作O的切線AE與DC的延長線交于點E,AD與BC交于點F.

(1)求證:四邊形ABCE是平行四邊形;

(2)若AE=6,CD=5,求OF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于A3,0和B1,0兩點,交y軸于點C0,3,點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D

1求二次函數(shù)的解析式;

2根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍;

3若直線與y軸的交點為E,連結(jié)AD、AE,求ADE的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0,a,b,c為常數(shù))圖象如圖所示,根據(jù)圖象解答問題.

(1)寫出過程ax2+bx+c=0的兩個根.

(2)寫出不等式ax2+bx+c>0的解集.

(3)若方程ax2+bx+c=k有兩個不相等的實數(shù)根,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案