【題目】如圖所示,在四邊形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,ADBC,BAD=DCB,若不增加任何字母和輔助線,要使得四邊形ABCD是矩形,則還需要增加一個(gè)條件是_______________

【答案】AC=BD或∠BAD=90°(答案不唯一)

【解析】根據(jù)矩形的判定定理可解,常用的方法有三種:(1)有一個(gè)角是直角的平行四邊形是矩形;(2)有三個(gè)角是直角的四邊形是矩形;(3)對(duì)角線互相平分且相等的四邊形是矩形,據(jù)此分析判斷.

因?yàn)樗倪呅?/span>ABCD,ADBC,

BAD=DCB

ABCD,

所以四邊形ABCD是平行四邊形,

要判斷平行四邊形ABCD是矩形,

根據(jù)矩形的判定定理,在不增加任何字母與輔助線的情況下,需添加的條件是四邊形的一個(gè)角是直角或?qū)蔷相等.

故答案為: AC=BD或∠BAD=90°(答案不唯一)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖,點(diǎn)(1,0)在函數(shù)圖象上,那么abc、2a+b、a+b+c、a﹣b+c這四個(gè)代數(shù)式中,值大于或等于零的數(shù)有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩地果園分別有橘子40噸和60噸,C、D兩地分別需要橘子30噸和70噸;已知從A、BC、D的運(yùn)價(jià)如表:

C

D

A果園

每噸15

每噸12

B果園

每噸10

每噸9

(1)若從A果園運(yùn)到C地的橘子為x噸,則從A果園運(yùn)到D地的橘子為 ____噸,

A果園將橘子運(yùn)往D地的運(yùn)輸費(fèi)用為 ____ 元.

(2)用含x的式子表示出總運(yùn)輸費(fèi)(要求:列式、化簡(jiǎn)).

(3)求總運(yùn)輸費(fèi)用的最大值和最小值.

(4)若這批橘子在C地和D地進(jìn)行再加工,經(jīng)測(cè)算,全部橘子加工完畢后總成本為w元,且w=-(x-25)2+4360.則當(dāng)x= ___ 時(shí),w有最 __ 值(填).這個(gè)值是 __

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店三、四月份出售同一品牌各種規(guī)格空調(diào)銷售臺(tái)輸入下表,回答:

三月

四月

商店平均每月銷售空調(diào)________臺(tái);

商店出售各種規(guī)格的空調(diào)中,眾數(shù)有________匹;

在研究六月份進(jìn)貨時(shí),商店經(jīng)理決定________(匹)的空調(diào)要多進(jìn),________(匹)的空調(diào)要少進(jìn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形OABC在平面直角坐標(biāo)系中如圖,已知AB=10,BC=8,EBC上一點(diǎn),將ABE沿AE折疊,點(diǎn)B剛好與OC邊上點(diǎn)D重合,過點(diǎn)E的反比例函數(shù)y=(k>0)與AB相交于點(diǎn)F,則線段AF的長(zhǎng)為(  )

A. B. C. 2 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了完成舌尖上的中國(guó)的錄制,節(jié)目組隨機(jī)抽查了某省“A.奶制品類,B.肉制品類,C.面制品類,D.豆制品類四類特色美食若干種,將收集的數(shù)據(jù)整理并繪制成下面兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息完成下列問題:

(1)這次抽查了四類特色美食共 種,扇形統(tǒng)計(jì)圖中a=  ,扇形統(tǒng)計(jì)圖中A部分圓心角的度數(shù)為  ;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)如果全省共有這四類特色美食120種,請(qǐng)你估計(jì)約有多少種屬于豆制品類”?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的頂點(diǎn)為A(1,4),拋物線與y軸交于點(diǎn)B(0,3),與x軸交于C,D兩點(diǎn).點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn).

(1)求此拋物線的解析式;
(2)求C,D兩點(diǎn)坐標(biāo)及△BCD的面積;
(3)若點(diǎn)P在x軸上方的拋物線上,滿足SPCD= SBCD , 求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD中,E是CD邊上一點(diǎn),
(1)將△ADE繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn),使AD,AB重合,得到△ABF,如圖1所示.觀察可知:與DE相等的線段是 , ∠AFB=∠

(2)如圖2,正方形ABCD中,P,Q分別是BC,CD邊上的點(diǎn),且∠PAQ=45°,試通過旋轉(zhuǎn)的方式說明:DQ+BP=PQ

(3)在(2)題中,連接BD分別交AP,AQ于M,N,你還能用旋轉(zhuǎn)的思想說明BM2+DN2=MN2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,一次函數(shù)y=x+2的圖象交y軸于點(diǎn)A,交x軸于點(diǎn)B,點(diǎn)Ex軸的正半軸上,OE=8,點(diǎn)F在射線BA上,過點(diǎn)Fx軸的垂線,點(diǎn)D為垂足,OD=6.

(1)寫出點(diǎn)F的坐標(biāo)   ;

(2)求證:∠ABO=45°;

(3)操作:將一塊足夠大的三角板的直角頂點(diǎn)放在線段BF的中點(diǎn)M處,一直角邊過點(diǎn)E,交FD于點(diǎn)C,另一直角邊與x軸相交于點(diǎn)N,如圖2,求點(diǎn)N的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案