【題目】如圖,已知直線與拋物線相交于,兩點(diǎn),拋物線交軸于點(diǎn),交軸正半軸于點(diǎn),拋物線的頂點(diǎn)為.
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)為直線下方的拋物線上一動(dòng)點(diǎn),當(dāng)的面積最大時(shí),求的面積及點(diǎn)的坐標(biāo);
(3)若點(diǎn)為軸上一動(dòng)點(diǎn),點(diǎn)在拋物線上且位于其對(duì)稱軸右側(cè),當(dāng)與相似時(shí),求點(diǎn)的坐標(biāo).
【答案】(1)y=;(2),;(3)或或或
【解析】
(1)將點(diǎn)代入中求出點(diǎn)B坐標(biāo),將點(diǎn)A,B,C坐標(biāo)代入中求解即可;
(2)如圖所示作輔助線,設(shè)點(diǎn)P,點(diǎn)E,表達(dá)出EP的長(zhǎng)度,將△ABP分割成兩個(gè)三角形進(jìn)行計(jì)算,再利用二次函數(shù)的性質(zhì)求最大值即可;
(3)通過(guò)坐標(biāo)得出△MAD是等腰直角三角形,從而判斷也是等腰直角三角形,再對(duì)進(jìn)行分類討論.
解:(1)將點(diǎn)代入中得,
∴點(diǎn),
將點(diǎn)、、代入中得
,解得:,
∴
(2)如圖①,過(guò)點(diǎn)P作EP⊥x軸,交AB于點(diǎn)E,則設(shè)點(diǎn)P,點(diǎn)E,
∴EP=,
∴
∵,開口向下,
∴當(dāng)時(shí),最大,
此時(shí)P
(3)在中,令y=0得,
解得,
∴點(diǎn)D(3,0)
又∵M(1,-2)
∴AD=4,AM=DM=,
∵
∴△MAD是等腰直角三角形,
若與相似,則也是等腰直角三角形,
有以下情況:
①當(dāng)∠MQN=90°,且點(diǎn)N與點(diǎn)D重合時(shí),如下圖所示,滿足要求,此時(shí)N(3,0)
②當(dāng)∠MQN=90°,點(diǎn)N在x軸上方時(shí),如下圖所示,作NF⊥x軸,ME⊥于x軸,
則△NFQ≌△QEM(AAS),
∴EM=FQ=2,EQ=NF
設(shè) ( ),則
∴EQ=t+2-1=t+1
∴
解得:,(舍去),
∴N
③當(dāng)∠QMN=90°時(shí), △與重合,N(3,0),
④當(dāng)∠QNM=90°時(shí),且點(diǎn)N在x軸上方時(shí),如圖所示作NH⊥x軸,NF⊥直線x=1
則△QHN≌△MFN,
∴FN=NH
設(shè),則,
∴
解得:(舍去)
此時(shí)N
⑤當(dāng)∠QNM=90°時(shí),且點(diǎn)N在x軸下方時(shí),如圖所示作NP⊥x軸,NG⊥直線x=1,
則△QPN≌△NGM
∴PN=GN
設(shè),則, ,
∴
解得(舍去)
此時(shí)N
綜上所述,或或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某游樂(lè)場(chǎng)新推出了一個(gè)“極速飛車”的項(xiàng)目.項(xiàng)目有兩條斜坡軌道以滿足不同的難度需求,游客可以乘坐垂直升降電梯AB自由上下選擇項(xiàng)目難度.其中斜坡軌道BC的坡度(或坡比)為i=1:2,BC=12米,CD=8米,∠D=36°,(其中點(diǎn)A、B、C、D均在同一平面內(nèi))則垂直升降電梯AB的高度約為( 。┟祝ň_到0.1米,參考數(shù)據(jù):tan36°≈0.73,cos36°≈0.81,sin36°≈0.59)
A.5.6B.6.9C.11.4D.13.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為改善生態(tài)環(huán)境,建設(shè)美麗鄉(xiāng)村,某村規(guī)劃將一塊長(zhǎng)18米,寬10米的矩形場(chǎng)地建設(shè)成綠化廣場(chǎng),如圖,內(nèi)部修建三條寬相等的小路,其中一條路與廣場(chǎng)的長(zhǎng)平行,另兩條路與廣場(chǎng)的寬平行,其余區(qū)域種植綠化,使綠化區(qū)域的面積為廣場(chǎng)總面積的80%.
(1)求該廣場(chǎng)綠化區(qū)域的面積;
(2)求廣場(chǎng)中間小路的寬.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖像與反比例函數(shù)的圖像交于,兩點(diǎn),與軸分別交于兩點(diǎn),且.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)若點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,連接,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了了解“校園文明監(jiān)督崗”的值圍情況,對(duì)全校各班級(jí)進(jìn)行了抽樣調(diào)查,過(guò)程如下:
收集數(shù)據(jù):從三個(gè)年級(jí)中隨機(jī)抽取了20個(gè)班級(jí),學(xué)校對(duì)各班的評(píng)分如下:
92 71 89 82 69 82 96 83 77 83
80 82 66 73 82 78 92 70 74 59
整理、描述數(shù)據(jù):按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
分?jǐn)?shù)段 | |||||
班級(jí)數(shù) | 1 | 2 | a | 8 | b |
說(shuō)明:成績(jī)90分及以上為優(yōu)秀,分為良好,分為合格,60分以下為不合格
分析數(shù)據(jù):樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、極差如下表,繪制扇形統(tǒng)計(jì)圖:
平均數(shù) | 中位數(shù) | 眾數(shù) | 極差 |
79 | c | 82 | d |
請(qǐng)根據(jù)以上信息解答下列問(wèn)題:
填空:______,______,______,______.
若我校共120個(gè)班級(jí),估計(jì)得分為優(yōu)秀的班級(jí)有多少個(gè)?
為調(diào)動(dòng)班級(jí)積極性,決定制定一個(gè)獎(jiǎng)勵(lì)標(biāo)準(zhǔn)分,凡到達(dá)或超過(guò)這個(gè)標(biāo)準(zhǔn)分的班級(jí)都將受到獎(jiǎng)勵(lì)如果要使得半數(shù)左右的班級(jí)都能獲獎(jiǎng),獎(jiǎng)勵(lì)標(biāo)準(zhǔn)分應(yīng)定為多少分?并簡(jiǎn)述其理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查學(xué)生對(duì)垃圾分類及投放知識(shí)的了解情況,從甲、乙兩校各隨機(jī)抽取40名學(xué)生進(jìn)行了相關(guān)知識(shí)測(cè)試,獲得了他們的成績(jī)(百分制),并對(duì)數(shù)據(jù)(成績(jī))進(jìn)行了整理、描述和分析.下面給出了部分信息.
a.甲、乙兩校40名學(xué)生成績(jī)的頻數(shù)分布統(tǒng)計(jì)表如下:
成績(jī)x 學(xué)校 | |||||
甲 | 4 | 11 | 13 | 10 | 2 |
乙 | 6 | 3 | 15 | 14 | 2 |
(說(shuō)明:成績(jī)80分及以上為優(yōu)秀,70~79分為良好,60~69分為合格,60分以下為不合格)
b.甲校成績(jī)?cè)?/span>這一組的是:
70 70 70 71 72 73 73 73 74 75 76 77 78
c.甲、乙兩校成績(jī)的平均分、中位數(shù)、眾數(shù)如下:
學(xué)校 | 平均分 | 中位數(shù) | 眾數(shù) |
甲 | 74.2 | n | 5 |
乙 | 73.5 | 76 | 84 |
根據(jù)以上信息,回答下列問(wèn)題:
(1)寫出表中n的值;
(2)在此次測(cè)試中,某學(xué)生的成績(jī)是74分,在他所屬學(xué)校排在前20名,由表中數(shù)據(jù)可知該學(xué)生是_____________校的學(xué)生(填“甲”或“乙”),理由是__________;
(3)假設(shè)乙校800名學(xué)生都參加此次測(cè)試,估計(jì)成績(jī)優(yōu)秀的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠ABC=∠DCB,添加以下條件,不能判定△ABC≌△DCB的是( 。
A.∠A=∠DB.∠ACB=∠DBCC.AC=DBD.AB=DC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,△ABC內(nèi)接于⊙O,AD⊥BC于D,BE⊥AC于E,AD、BE交于點(diǎn)H.
(1)如圖1,連接OA、OC,若BH=AC,求∠AOC的度數(shù).
(2)如圖2延長(zhǎng)BE交⊙O于點(diǎn)G,求證:HE=GE;
(3)如圖3,在(2)的條件下,P是弦AC上一點(diǎn),過(guò)點(diǎn)P作PM∥BC交AB于點(diǎn)M,若∠PCD+2∠PDC=90°,BM=,AM=,求⊙O半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將2019個(gè)邊長(zhǎng)為1的正方形按如圖所示的方式排列,點(diǎn)A,A1,A2,A3…A2019和點(diǎn)M,M1,M2…M2018是正方形的頂點(diǎn),連接AM1,AM2,AM3…AM2018分別交正方形的邊A1M,A2M1,A3M2…A2018M2017于點(diǎn)N1,N2,N3…N2018,四邊形M1N1A1A2的面積是S1,四邊形M2N2A2A3的面積是S2,…,則S2018為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com