【題目】如圖1,若△ABC和△ADE為等邊三角形,M,N分別是BE,CD的中點,

(1)求證:△AMN是等邊三角形.

(2)當把△ADE繞A點旋轉(zhuǎn)到圖2的位置時,CD=BE是否仍然成立?若成立請證明,若不成立請說明理由.

【答案】(1)證明見解析;(2)CD=BE.理由見解析

【解析】試題分析:(1由等邊三角形的性質(zhì)得到AB=AC,AE=AD, BAC=∠EAD=60°從而得到BE=CD, 再由中點的定義得到EN=DN, 即有AN=AM, 從而可以得到結(jié)論;

2可以利用SAS判定ABE≌△ACD,全等三角形的對應(yīng)邊相等,所以CD=BE

試題解析:解:1ABCADE是等邊三角形,AB=AC,AE=AD, BAC=∠EAD=60°,

AB-AE=AC-AD,BE=CD, M,N分別是BE,CD的中點,EM=BE,DN=CD, EN=DN, EM+AE=DN+AD,AN=AM, ∵∠BAC=60° AMN是等邊三角形;

2CD=BE理由如下:

ABCADE為等邊三角形,AB=AC,AE=AD,BAC=∠EAD=60°

∵∠BAE=∠BACEAC=60°∠EAC,DAC=∠DAEEAC=60°∠EAC,BAE=∠DACABEACD,CD=BE

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,過點O作兩條射線OMON,且AOMCON90°

(1)OC平分AOM,求AOD的度數(shù).

(2)∠1BOC,求AOCMOD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AC=BCDAB上的一點,AECD于點E,BFCD于點F,若CE=BF,試判斷ACBC的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地為提倡節(jié)約用水,準備實行自來水“階梯計費”方式,用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實行加價收費,為更好地決策,自來水公司隨機抽取部分用戶的用適量數(shù)據(jù),并繪制了如下不完整統(tǒng)計圖(每組數(shù)據(jù)包括右端點但不包括左端點),請你根據(jù)統(tǒng)計圖解決下列問題:

(1)此次調(diào)查抽取了多少用戶的用水量數(shù)據(jù)?

(2)補全頻數(shù)分直方圖,求扇形統(tǒng)計圖中“25噸~30噸”部分的圓心角度數(shù);

(3)如果自來水公司將基本用水量定為每戶25噸,那么該地20萬用戶中約有多少用戶的用水全部享受基本價格?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若兩條拋物線的頂點相同,則稱它們?yōu)?/span>友好拋物線,拋物線C1y1=﹣2x2+4x+2C2u2=﹣x2+mx+n友好拋物線

1)求拋物線C2的解析式.

2)點A是拋物線C2上在第一象限的動點,過AAQx軸,Q為垂足,求AQ+OQ的最大值.

3)設(shè)拋物線C2的頂點為C,點B的坐標為(﹣14),問在C2的對稱軸上是否存在點M,使線段MB繞點M逆時針旋轉(zhuǎn)90°得到線段MB′,且點B′恰好落在拋物線C2上?若存在求出點M的坐標,不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+ca0)的對稱軸為x=1,交x軸的一個交點為(x1,0),且﹣1x10,有下列5個結(jié)論:①abc0;9a﹣3b+c0;2c3b;a+c2b2;a+bmam+b)(m≠1的實數(shù))其中正確的結(jié)論有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小聰和小明沿同一條路同時從學校出發(fā)到圖書館查閱資料,學校與圖書館的路程是4千米,小聰騎自行車,小明步行,當小聰從原路回到學校時,小明剛好到達圖書館,圖中折線OABC和線段OD分別表示兩人離學校的路程(千米)與所經(jīng)過的時間(分鐘)之間的函數(shù)關(guān)系,請根據(jù)圖象回答下列問題:

1)小聰在圖書館查閱資料的時間為 分鐘,小聰返回學校的速度為 千米/分鐘.

2)請你求出小明離開學校的路程(千米)與所經(jīng)過的時間(分鐘)之間的函數(shù)關(guān)系;

3)當小聰與小明迎面相遇時,他們離學校的路程是多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】本題滿分8如圖,在ABC中,AB=AC,DACABC的一個外角

實踐與操作:

根據(jù)要求尺規(guī)作圖,并在圖中標明相應(yīng)字母保留作圖痕跡,不寫作法

1DAC的平分線AM;

2作線段AC的垂直平分線,與AM交于點F,與BC邊交于點E,連接AECF

猜想并證明:

判斷四邊形AECF的形狀并加以證明

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案