【題目】已知y是x的一次函數(shù),當(dāng)時(shí),;當(dāng)時(shí),,求:
(1)這個(gè)一次函數(shù)的表達(dá)式和自變量x的取值范圍
(2)當(dāng)時(shí),自變量x的值
(3)當(dāng)時(shí),自變量x的取值范圍.
【答案】(1)y=-x+5,自變量x的取值范圍是:x取任意實(shí)數(shù);(2)x=-2;(3)x<4.
【解析】
(1)由待定系數(shù)法即可求解;
(2)把代入一次函數(shù)解析式,解關(guān)于x的一元一次方程,即可;
(3)由,可得關(guān)于x的一元一次不等式,解不等式,即可.
(1)∵y是x的一次函數(shù),
∴設(shè)y=kx+b,
把,;,,代入y=kx+b,
得到:,解得:k=-1,b=5,
∴一次函數(shù)的解析式為:y=-x+5,自變量x的取值范圍是:x取任意實(shí)數(shù);
(2)當(dāng)y=7時(shí),7=-x+5,解得:x=-2;
(3)當(dāng)時(shí),即-x+5>1,解得:x<4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】朱錦汶同學(xué)學(xué)習(xí)了全等三角形后,利用全等三角形繪制出了下面系列圖案,第(1)個(gè)圖案由2個(gè)全等的三角形組成,第(2)個(gè)圖案由4個(gè)全等的三角形組成,(3)個(gè)圖案由7個(gè)全等的三角形組成,(4)個(gè)圖案由12個(gè)全等的三角形組成.則第(8)個(gè)圖案中全等三角形的個(gè)數(shù)為( )
A.52B.136C.256D.264
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AC,AE=AF,BE與CF交于點(diǎn)D,則對于下列結(jié)論:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分線上.其中正確的是( 。
A. ① B. ② C. ①和② D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了積極響應(yīng)國家新農(nóng)村建設(shè),某市鎮(zhèn)政府采用了移動(dòng)宣講的形式進(jìn)行宣傳動(dòng)員.如圖,筆直公路的一側(cè)點(diǎn)處有一村莊,村莊到公路的距離為800米,假使宣講車周圍1000米以內(nèi)能聽到廣播宣傳,宣講車在公路上沿方向行駛時(shí):
(1)請問村莊能否聽到宣傳,并說明理由;
(2)如果能聽到,已知宣講車的速度是每分鐘300米,那么村莊總共能聽到多長時(shí)間的宣傳?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉行“校園好聲音”歌手大賽,初、高中部根據(jù)初賽成績,各選出名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽.每個(gè)隊(duì)名選手的決賽成績?nèi)鐖D所示:
填表:
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
初中代表隊(duì) | |||
高中代表隊(duì) |
結(jié)合兩隊(duì)決賽成績的平均數(shù)和中位數(shù),分析哪個(gè)代表隊(duì)的成績較好;
計(jì)算兩隊(duì)決賽成績的方差,并判斷哪個(gè)代表隊(duì)的成績較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=(x>0)的圖象與直線y=x交于點(diǎn)M,∠AMB=90°,其兩邊分別與兩坐標(biāo)軸的正半軸交于點(diǎn)A,B,四邊形OAMB的面積為6.
(1)求k的值;
(2)點(diǎn)P在反比例函數(shù)y=(x>0)的圖象上,若點(diǎn)P的橫坐標(biāo)為3,∠EPF=90°,其兩邊分別與x軸的正半軸,直線y=x交于點(diǎn)E,F(xiàn),問是否存在點(diǎn)E,使得PE=PF?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD,AE分別是△ABC的高和角平分線,
(1)若∠ABC=30°,∠ACB=50°,求∠DAE的度數(shù)
(2)寫出∠DAE與∠C-∠B的數(shù)量關(guān)系,并證明你的結(jié)論
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,下列條件中不能判定直線AT是⊙O的切線的是( )
A. AB=4,AT=3,BT=5 B. ∠B=45°,AB=AT
C. ∠B=55°,∠TAC=55° D. ∠ATC=∠B
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長方形 ABCD 沿 EF 折疊,使點(diǎn) D 與點(diǎn) B 重合.
(1)若∠AEB=40°,求∠BFE 的度數(shù);
(2)若 AB=6,AD=18,求 CF 的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com