【題目】在中, .邊的垂直平分線交邊于點(diǎn),邊的垂線交邊于點(diǎn),連接, ,則的度數(shù)為__________.(用含的代數(shù)式表示)
【答案】
【解析】分兩種情況進(jìn)行討論,先根據(jù)線段垂直平分線的性質(zhì),得到∠B=∠BAD,∠C=∠CAE,進(jìn)而得到∠BAD+∠CAE=∠B+∠C=180°-,再根據(jù)角的和差關(guān)系進(jìn)行計(jì)算即可.
解:有兩種情況:
①如圖所示,當(dāng)∠BAC90°時(shí),
∵DM垂直平分AB,
∴DA=DB,
∴∠B=∠BAD,
同理可得,∠C=∠CAE,
∴∠BAD+∠CAE=∠B+∠C=180°α,
∴∠DAE=∠BAC(∠BAD+∠CAE)=α(180°α)=2α180°;
②如圖所示,當(dāng)∠BAC<90°時(shí),
∵DM垂直平分AB,
∴DA=DB,
∴∠B=∠BAD,
同理可得,∠C=∠CAE,
∴∠BAD+∠CAE=∠B+∠C=180°α,
∴∠DAE=∠BAD+∠CAE∠BAC=180°αα=180°2α.
故答案為:2α180°或180°2α.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點(diǎn),連接AE、BE,BE⊥AE,延長(zhǎng)AE交BC的延長(zhǎng)線于點(diǎn)F. 已知AD=2cm,BC=5cm.
(1)求證:FC=AD;
(2)求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉行“做文明郴州人”演講比賽,聘請(qǐng)了10位評(píng)委為參賽選手打分,賽前,組委會(huì)擬定了四種記分方案:方案一:取所有評(píng)委所給的平均分;
方案二:在所有評(píng)委給的分中,去掉一個(gè)最高分,去掉一個(gè)最低分,取剩余得分的平均分;
方案三:取所有評(píng)委給分的中位數(shù);
方案四:取所有評(píng)委給分的眾數(shù).
為了探究四種記分方案的合理性,先讓一名表演選手(不參加正式比賽的)演講,讓10位評(píng)委給演講者評(píng)分,表演者得分如下表:
評(píng)委編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
打分 | 7.0 | 7.8 | 3.2 | 8.0 | 8.4 | 8.4 | 9.8 | 8.0 | 8.4 | 8.0 |
(1)請(qǐng)分別用上述四種方案計(jì)算表演者的得分;
(2)如果你是評(píng)委會(huì)成員,你會(huì)建議采用哪種可行的記分方案?你覺得哪幾種方案不合適?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一天小明和冬冬利用溫差來測(cè)量山峰的高度.冬冬在山腳測(cè)得的溫度是4℃,小明此時(shí)在山頂測(cè)得的溫度是2℃,已知該地區(qū)高度每升高100米,氣溫下降0.8℃,問這個(gè)山峰有多高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF.以下結(jié)論:
①AD∥BC;
②∠ACB=2∠ADB;
③∠ADC=90°﹣∠ABD;
④BD平分∠ADC;
⑤∠BDC=∠BAC.
其中正確的結(jié)論有( )
A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】畫圖并填空:如圖,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn).
(1)將△ABC向左平移8格,再向下平移1格.請(qǐng)?jiān)趫D中畫出平移后的△A′B′C′
(2)利用網(wǎng)格在圖中畫出△ABC的中線CD,高線AE;
(3)△A′B′C′的面積為_____.
(4)在平移過程中線段BC所掃過的面積為 .
(5)在右圖中能使的格點(diǎn)P的個(gè)數(shù)有 個(gè)(點(diǎn)P異于A).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題8分)已知:如圖①,直線MN⊥直線PQ,垂足為O,點(diǎn)A在射線OP上,點(diǎn)B在射線OQ上(A、B不與O點(diǎn)重合),點(diǎn)C在射線ON上且OC=2,過點(diǎn)C作直線∥PQ,點(diǎn)D在點(diǎn)C的左邊且CD=3.
(1)直接寫出△BCD的面積.
(2)如圖②,若AC⊥BC,作∠CBA的平分線交OC于E,交AC于F,則∠CEF與∠CFE有何數(shù)量關(guān)系?請(qǐng)說明理由.
(3)如圖③,若∠ADC=∠DAC,點(diǎn)B在射線OQ上運(yùn)動(dòng),∠ACB的平分線交DA的延長(zhǎng)線于點(diǎn)H,在點(diǎn)B運(yùn)動(dòng)過程中的值是否變化?若不變,直接寫出其值;若變化,直接寫出變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+c與拋物線y=ax2+bx+c的圖像都經(jīng)過y軸上的D點(diǎn),拋物線與x軸交于A、B兩點(diǎn),其對(duì)稱軸為直線x=1,且OA=OD.直線y=kx+c與x軸交于點(diǎn)C(點(diǎn)C在點(diǎn)B的右側(cè)).則下列命題中正確命題的是( ) ①abc>0; ②3a+b>0; ③﹣1<k<0; ④4a+2b+c<0; ⑤a+b<k.
A.①②③
B.②③⑤
C.②④⑤
D.②③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在杭州西湖風(fēng)景游船處,如圖,在離水面高度為5m的岸上,有人用繩子拉船靠岸,開始時(shí)繩子BC的長(zhǎng)為13m,此人以0.5m/s的速度收繩.10s后船移動(dòng)到點(diǎn)D的位置,問船向岸邊移動(dòng)了多少m?(假設(shè)繩子是直的,結(jié)果保留根號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com