【題目】如圖,點(diǎn)P的角平分線OC上一點(diǎn),PNOB于點(diǎn)N,點(diǎn)M是線段ON上一點(diǎn),已知OM=3,ON=4,點(diǎn)DOA上一點(diǎn),若滿足PD=PM,OD的長度為________

【答案】3或5

【解析】

過點(diǎn)PPEOA于點(diǎn)E,分點(diǎn)D在線段OE上,點(diǎn)D在射線EA上兩種情況討論,利用角平分線的性質(zhì)可得PN=PE,即可求OE=ON=4,由題意可證PMN≌△PDE,可求OD的長.

如圖:過點(diǎn)PPEOA于點(diǎn)E

OC平分∠AOB,PEOA,PNOB
PE=PN
PE=PN,OP=OP
∴△OPE≌△OPNHL
OE=ON=4
OM=3ON=4
MN=1
若點(diǎn)D在線段OE上,
PM=PD,PE=PN
∴△PMN≌△PDEHL
DE=MN=1
OD=OE-DE=3
若點(diǎn)D在射線EA上,
PM=PD,PE=PN
∴△PMN≌△PDEHL
DE=MN=1
OD=OE+DE=5
故答案為35

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于點(diǎn),與軸交于點(diǎn)、,點(diǎn)坐標(biāo)為

求該拋物線的解析式;

拋物線的頂點(diǎn)為,在軸上找一點(diǎn),使最小,并求出點(diǎn)的坐標(biāo);

點(diǎn)是線段上的動(dòng)點(diǎn),過點(diǎn),交于點(diǎn),連接.當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo);

若平行于軸的動(dòng)直線與該拋物線交于點(diǎn),與直線交于點(diǎn),點(diǎn)的坐標(biāo)為.問:是否存在這樣的直線,使得是等腰三角形?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,,分別是線段,上的點(diǎn),連接,使四邊形為正方形,若點(diǎn)上的動(dòng)點(diǎn),連接,將矩形沿折疊使得點(diǎn)落在正方形的對(duì)角線所在的直線上,對(duì)應(yīng)點(diǎn)為,則線段的長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明去離家2.4 km的體育館看球賽,進(jìn)場(chǎng)時(shí),發(fā)現(xiàn)門票還放在家中,此時(shí)離比賽還有45 min,于是他立即步行(勻速)回家取票,在家取票用時(shí)2 min,取到票后,他馬上騎自行車(勻速)趕往體育館.已知小明騎自行車從家趕往體育館比從體育館步行回家所用時(shí)間少20 min,騎自行車的速度是步行速度的3倍.

(1)小明步行的速度是多少?

(2)小明能否在球賽開始前趕到體育館?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形一腰上的高與另一腰的夾角為40°,則等腰三角形底角的度數(shù)是________________°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC,點(diǎn)E,F(xiàn)在邊BC上,BE=CF,點(diǎn)DAF的延長線上,AD=AC.

(1)求證:ABE≌△ACF;

(2)若∠BAE=30°,則∠ADC=   °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AD是它的角平分線.

1)如圖1,求證:SABDSACDABACBDCD;

2)如圖2,EAB上的點(diǎn),連接ED,若BD3,BECD2,AE2CD,求證:BED是等腰三角形;

3)在圖1中,若3BAC2C,∠ADB>∠B>∠BAD,直接寫出∠BAC的取值范圍   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+2與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且點(diǎn)A的坐標(biāo)為(1,0).

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

(2)判斷ABC的形狀,并證明你的結(jié)論;

(3)點(diǎn)M是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),當(dāng)ACM的周長最小時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)商店以2元的批發(fā)價(jià)進(jìn)了一批紀(jì)念品.經(jīng)調(diào)查發(fā)現(xiàn),每個(gè)定價(jià)3元,每天可以能賣出500件,而且定價(jià)每上漲0.1元,其銷售量將減少10件.根據(jù)規(guī)定:紀(jì)念品售價(jià)不能超過批發(fā)價(jià)的2.5倍.

1)當(dāng)每個(gè)紀(jì)念品定價(jià)為3.5元時(shí),商店每天能賣出________件;

2)如果商店要實(shí)現(xiàn)每天800元的銷售利潤,那該如何定價(jià)?

查看答案和解析>>

同步練習(xí)冊(cè)答案