【題目】如圖,一架2.5米長(zhǎng)的梯子,斜靠在一豎直的墻上,這時(shí)梯足到墻底端的距離為0.7米,如果梯子的頂端沿墻下滑0.4米,那么梯足將向外移多少米?(5分)
【答案】梯足向外移動(dòng)了0.8m.
【解析】在直角三角形ABC中,已知AB,BC根據(jù)勾股定理即可求AC的長(zhǎng)度,根據(jù)AC=AA1+CA1即可求得CA1的長(zhǎng)度,在直角三角形A1B1C中,已知AB=A1B1,CA1即可求得CB1的長(zhǎng)度,根據(jù)BB1=CB1-CB即可求得BB1的長(zhǎng)度。
解:在直角△ABC中,已知AB=2.5m,BC=0.7m,
則AC=
∵AC=AA1+CA1
∴CA1=2m,
∵在直角△A1B1C中,AB=A1B1,且A1B1為斜邊,
∴BB1=CB1-CB=1.5m-0.7m=0.8m
答:梯足向外移動(dòng)了0.8m. 故答案為0.8m。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是平行四邊形紙片ABCD的BC邊上一點(diǎn),以過(guò)點(diǎn)P的直線為折痕折疊紙片,使點(diǎn)C,D落在紙片所在平面上C′,D′處,折痕與AD邊交于點(diǎn)M;再以過(guò)點(diǎn)P的直線為折痕折疊紙片,使點(diǎn)B恰好落在C′P邊上B′處,折痕與AB邊交于點(diǎn)N.若∠MPC=75°,則∠NPB′= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象過(guò)A(2,0),B(0,﹣1)和C(4,5)三點(diǎn).
(1)求二次函數(shù)的解析式;
(2)設(shè)二次函數(shù)的圖象與x軸的另一個(gè)交點(diǎn)為D,求點(diǎn)D的坐標(biāo);
(3)在同一坐標(biāo)系中畫(huà)出直線y=x+1,并寫(xiě)出當(dāng)x在什么范圍內(nèi)時(shí),一次函數(shù)的值大于二次函數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O是△ABC內(nèi)一點(diǎn),且O到三邊AB、BC、CA的距離OF=OD=OE,若∠BAC=70°,∠BOC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(﹣2,3)關(guān)于y軸對(duì)稱的點(diǎn)A′的坐標(biāo)是( )
A.(-2,6) B.(2,3) C.(-2,-3) D.(2,-3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(6分)已知:如圖,AD⊥BC于D,EG⊥BC與G,∠E=∠3,試問(wèn):AD是∠BAC的平分線嗎?若是,請(qǐng)說(shuō)明理由.(在橫線上填寫(xiě)正確的依據(jù)或證明步驟)
解答:是,理由如下:
∵AD⊥BC,EG⊥BC(已知)
∴∠4=∠5=90°(垂直的定義)
∴AD∥EG
∴∠1=∠E
∠2=∠3
∵∠E=∠3(已知)
∴∠ =∠ ;
∴AD是∠BAC的平分線(角平分線的定義).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中有兩點(diǎn)M(a,b),N(c,d),規(guī)定(a,b)⊕(c,d)=(a+c,b+d),則稱點(diǎn)Q(a+c,b+d)為M,N的“和點(diǎn)”.若以坐標(biāo)原點(diǎn)O與任意兩點(diǎn)及它們的“和點(diǎn)”為頂點(diǎn)能構(gòu)成四邊形,則稱這個(gè)四邊形為“和點(diǎn)四邊形”,現(xiàn)有點(diǎn)A(2,5),B(﹣1,3),若以O(shè),A,B,C四點(diǎn)為頂點(diǎn)的四邊形是“和點(diǎn)四邊形”,則點(diǎn)C的坐標(biāo)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com