精英家教網如圖,AB是⊙O直徑,D為⊙O上一點,AT平分∠BAD交⊙O于點T,過T作AD的垂線交AD的延長線于點C.
(1)求證:CT為⊙O的切線;
(2)若⊙O半徑為2,CT=
3
,求AD的長.
分析:(1)連接OT,根據(jù)角平分線的性質,以及直角三角形的兩個銳角互余,證得CT⊥OT,CT為⊙O的切線;
(2)證明四邊形OTCE為矩形,求得OE的長,在直角△OAE中,利用勾股定理即可求解.
解答:(1)證明:連接OT,
∵OA=OT,
∴∠OAT=∠OTA,
又∵AT平分∠BAD,
∴∠DAT=∠OAT,
∴∠DAT=∠OTA,
∴OT∥AC,(3分)精英家教網
又∵CT⊥AC,
∴CT⊥OT,
∴CT為⊙O的切線;(5分)

(2)解:過O作OE⊥AD于E,則E為AD中點,
又∵CT⊥AC,
∴OE∥CT,
∴四邊形OTCE為矩形,(7分)
∵CT=
3

∴OE=
3
,
又∵OA=2,
∴在Rt△OAE中,AE=
OA2-OE2
=
22-(
3
)
2
=1
,
∴AD=2AE=2.(10分)
點評:本題主要考查了切線的判定以及性質,證明切線時可以利用切線的判定定理把問題轉化為證明垂直的問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,AB是⊙O直徑,BC是弦,OD⊥BC于E交弧BC于D.根據(jù)中考改編
(1)請寫出四個不同類型的正確結論;
(2)連接CD、DB設∠CDB=α,∠ABC=β,你認為α=β+90°這個結論正確嗎?若正確請證明過程.若不正確請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,AB是⊙O直徑,C、D是⊙O上的兩點,若∠BAC=20°,
AD
=
DC
,則∠DAC的度數(shù)是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB是⊙O直徑,OB=6,弦CD=10,則弦心距OP的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB是⊙O直徑,弦CD交AB于E,∠AEC=45°,AB=2.設AE=x,CE2+DE2=y.下列圖象中,能表示y與x的函數(shù)關系是的( 。

查看答案和解析>>

同步練習冊答案