精英家教網 > 初中數學 > 題目詳情
如圖,在平面直角坐標系中,點P(x,y)是第一象限直線y=-x+6上的點,點A(5,0),O是精英家教網坐標原點,△PAO的面積為S.
(1)求S與x的函數關系式;
(2)當S=10時,求tan∠POA的值.
分析:(1)點P在直線y=-x+6上,故三角形POA的高為y.所以S=
1
2
×5×(-x+6).
(2)根據三角形的面積公式求出S=10時的點P的縱坐標y的值,然后代入直線解析式求出點P的橫坐標x的值,最后根據三角函數tan∠POA=
y
x
計算即可得解.
解答:解:(1)因為點P在第一象限直線y=-x+6上,故△POA的高為y,
所以S=
1
2
×5×(-x+6)=-
5
2
x+15.

(2)設點P(x,y),
當S=10時,S=
1
2
OA•y=10,
1
2
×5y=10,
解得y=4,
所以,-x+6=4,
解得x=2,
所以,tan∠POA=
y
x
=
4
2
=2.
點評:本題考查一次函數的綜合題以及三角形面積的計算方法,難度一般.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(包括邊界)的所有整數點(橫、縱坐標均為整數)中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案