凱里市某大型酒店有包房100間,在每天晚餐營業(yè)時(shí)間,每間包房收包房費(fèi)100元時(shí),包房便可全部租出;若每間包房收費(fèi)提高20元,則會減少10間包房租出;若每間包房收費(fèi)再提高20元,則會再減少10間包房租出,以每次提高20元的這種方法變化下去.

(1)設(shè)每間包房收費(fèi)提高x(),則每間包房的收入為y1(),但會減少y2間包房租出,請分別寫出y1y2x之間的函數(shù)關(guān)系式;

(2)為了投資少而利潤大,每間包房提高x()后,設(shè)酒店老板每天晚餐包房總收入為y(),請寫出yx之間的函數(shù)關(guān)系式,求出每間包房每天晚餐應(yīng)提高多少元可獲得最大包房費(fèi)收入,并說明理由.

答案:
解析:

  解:第一步:審題

  根據(jù)題意,設(shè)每個(gè)房間每天的定價(jià)增加x元,因?yàn)槊總(gè)房間每天的定價(jià)每增加20元時(shí),就會有10個(gè)房間空閑,則房間每天的入住量y100,所以第(1)小問解決了.因?yàn)橘e館每天的房間收費(fèi)等于每間費(fèi)用乘以房間數(shù),所以第(2)問也可獲解.

  第二步:建模

  用字母x、y分別表示問題中的自變量和因變量,列出yx之間的函數(shù)關(guān)系式,即

  (1)y1100x,y2x(2)y(100x)·(100x)

  第三步:解題

  根據(jù)所列關(guān)系式,運(yùn)用配方法或公式法解決問題.y(100x)·(100x)配方為y=-(x50)211250.因?yàn)樘醿r(jià)前包房費(fèi)總收入為100×10010000(),當(dāng)x50時(shí),可獲最大包房費(fèi)收入11250元.

  第四步:作答

  因?yàn)?/FONT>11250元>10000元,又因?yàn)槊看翁醿r(jià)為20元,所以每間包房晚餐應(yīng)提高40元或60元.

  點(diǎn)評:以上例題主要考查應(yīng)用二次函數(shù)的建模思想解決實(shí)際問題.重點(diǎn)理解好價(jià)格的升降與銷售量之間的關(guān)系,用好利潤的計(jì)算公式.最后用配方求二次函數(shù)的最大值,注意要判斷x是否在自變量的取值范圍內(nèi).


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

凱里市某大型酒店有包房100間,在每天晚餐營業(yè)時(shí)間,每間包房收包房費(fèi)100元時(shí),包房便可全部租出;若每間包房收費(fèi)提高20元,則減少10間包房租出,若每間包房收費(fèi)再提高20元,則再減少10間包房租出,以每次提高20元的這種方法變化下去.
(1)設(shè)每間包房收費(fèi)提高x(元),則每間包房的收入為y1(元),但會減少y2間包房租出,請分別寫出y1,y2與x之間的函數(shù)關(guān)系式.
(2)為了投資少而利潤大,每間包房提高x(元)后,設(shè)酒店老板每天晚餐包房總收入為y(元),請寫出y與x之間的函數(shù)關(guān)系式,求出每間包房每天晚餐應(yīng)提高多少元可獲得最大包房費(fèi)收入,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

凱里市某大型酒店有包房100間,在每天晚餐營業(yè)時(shí)間,每間包房收包房費(fèi)100元時(shí),包房便可全部租出;若每間包房收費(fèi)提高20元,則減少10間包房租出,若每間包房收費(fèi)再提高20元,則再減少10間包房租出,以每次提高20元的這種方法變化下去.

(1)設(shè)每間包房收費(fèi)提高x(元),則每間包房的收入為y1(元),但會減少y2間包房租出,請分別寫出y1、y2與x之間的函數(shù)關(guān)系式.

(2)為了投資少而利潤大,每間包房提高x(元)后,設(shè)酒店老板每天晚餐包房總收入為y(元),請寫出y與x之間的函數(shù)關(guān)系式,求出每間包房每天晚餐應(yīng)提高多少元可獲得最大包房費(fèi)收入,并說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年吉林省長春外國語學(xué)校初三上學(xué)期第一次月考數(shù)學(xué)卷 題型:解答題

凱里市某大型酒店有包房100間,在每天晚餐營業(yè)時(shí)間,每間包房收包房費(fèi)100元時(shí),包房便可全部租出;若每間包房收費(fèi)提高20元,則減少10間包房租出,若每間包房收費(fèi)再提高20元,則再減少10間包房租出,以每次提高20元的這種方法變化下去.
(1)設(shè)每間包房收費(fèi)提高x(元),則每間包房的收入為y1(元),但會減少y2間包房租出,請分別寫出y1、y2與x之間的函數(shù)關(guān)系式.
(2)為了投資少而利潤大,每間包房提高x(元)后,設(shè)酒店老板每天晚餐包房總收入為y(元),請寫出y與x之間的函數(shù)關(guān)系式,求出每間包房每天晚餐應(yīng)提高多少元可獲得最大包房費(fèi)收入,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010屆江西省初一年級上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題

凱里市某大型酒店有包房100間,在每天晚餐營業(yè)時(shí)間,每間包房收包房費(fèi)100元時(shí),包房便可全部租出;若每間包房收費(fèi)提高20元,則減少10間包房租出,若每間包房收費(fèi)再提高20元,則再減少10間包房租出,以每次提高20元的這種方法變化下去.

(1)設(shè)每間包房收費(fèi)提高x(元),則每間包房的收入為y1(元),但會減少y2間包房租出,請分別寫出y1、y2與x之間的函數(shù)關(guān)系式.

(2)為了投資少而利潤大,每間包房提高x(元)后,設(shè)酒店老板每天晚餐包房總收入為y(元),請寫出y與x之間的函數(shù)關(guān)系式,求出每間包房每天晚餐應(yīng)提高多少元可獲得最大包房費(fèi)收入,并說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:貴州省中考真題 題型:解答題

凱里市某大型酒店有包房100間,在每天晚餐營業(yè)時(shí)間,每間包房收包房費(fèi)100元時(shí),包房便可全部租出。若每間包房收費(fèi)提高20元,則減少10間包房租出;若每間包房收費(fèi)再提高20元,則再減少10間包房租出。以每次提高20元的這種方法變化下去。
(1)設(shè)每間包房收費(fèi)提高x(元),則每間包房的收入為y1(元),但會減少y2間包房租出,請分別寫出y1、y2與x之間的函數(shù)關(guān)系式;
 (2)為了投資少而利潤大,每間包房提高x(元)后,設(shè)酒店老板每天晚餐包房總收入為y(元),請寫出y與x之間的函數(shù)關(guān)系式,求出每間包房每天晚餐應(yīng)提高多少元可獲得最大包房費(fèi)收入,并說明理由。

查看答案和解析>>

同步練習(xí)冊答案