【題目】如圖,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分線.
(1)求證:△BCD是等腰三角形;
(2)△BCD的周長是a,BC=b,求△ACD的周長(用含a,b的代數(shù)式表示)
【答案】(1)見解析;(2)a﹣b+b+b=a+b.
【解析】試題分析:(1)先由AB=AC,∠A=36°,可求∠B=∠ACB==72°,然后由DE是AC的垂直平分線,可得AD=DC,進而可得∠ACD=∠A=36°,然后根據(jù)外角的性質(zhì)可求:∠CDB=∠ACD+∠A=72°,根據(jù)等角對等邊可得:CD=CB,進而可證△BCD是等腰三角形;
(2)由(1)知:AD=CD=CB=b,由△BCD的周長是a,可得AB=a﹣b,由AB=AC,可得AC=a﹣b,進而得到△ACD的周長=AC+AD+CD=a﹣b+b+b=a+b.
(1)證明:∵AB=AC,∠A=36°,
∴∠B=∠ACB==72°,
∵DE是AC的垂直平分線,
∴AD=DC,
∴∠ACD=∠A=36°,
∵∠CDB是△ADC的外角,
∴∠CDB=∠ACD+∠A=72°,
∴∠B=∠CDB,
∴CB=CD,
∴△BCD是等腰三角形;
(2)解:∵AD=CD=CB=b,△BCD的周長是a,
∴AB=a﹣b,
∵AB=AC,
∴AC=a﹣b,
∴△ACD的周長=AC+AD+CD=a﹣b+b+b=a+b.
點睛:此題考查了等腰三角形的性質(zhì),線段垂直平分線的性質(zhì)以及三角形內(nèi)角和定理等知.此題綜合性較強,但難度不大,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應用,注意等腰三角形的性質(zhì)與等量代換.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某小區(qū)①號樓與號樓隔河相望,李明家住在①號樓,他很想知道號樓的高度,于是他做了一些測量,他先在B點測得C點的仰角為60°,然后到42米高的樓頂A處,測得C點的仰角為30°,請你幫助李明計算號樓的高度CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為一邊向外作等邊三角形ACD,點E為AB的中點,連結(jié)DE.
(1)證明DE∥CB;
(2)探索AC與AB滿足怎樣的數(shù)量關(guān)系時,四邊形DCBE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖為某城市部分街道示意圖,四邊形ABCD為正方形,點G在對角線BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路線為B→A→G→E,小聰?shù)眯凶叩穆肪為B→A→D→E→F.若小敏行走的路程為3100m,則小聰行走的路程為m.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點G在對角線BD上(不與點B,D重合),GE⊥DC于點E,GF⊥BC于點F,連結(jié)AG.
(1)寫出線段AG,GE,GF長度之間的數(shù)量關(guān)系,并說明理由;
(2)若正方形ABCD的邊長為1,∠AGF=105°,求線段BG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小黃準備給長8m,寬6m的長方形客廳鋪設瓷磚,現(xiàn)將其劃分成一個長方形ABCD區(qū)域Ⅰ(陰影部分)和一個環(huán)形區(qū)域Ⅱ(空白部分),其中區(qū)域Ⅰ用甲、乙、丙三種瓷磚鋪設,且滿足PQ∥AD,如圖所示.
(1)若區(qū)域Ⅰ的三種瓷磚均價為300元/m2 , 面積為S(m2),區(qū)域Ⅱ的瓷磚均價為200元/m2 , 且兩區(qū)域的瓷磚總價為不超過12000元,求S的最大值;
(2)若區(qū)域Ⅰ滿足AB:BC=2:3,區(qū)域Ⅱ四周寬度相等
①求AB,BC的長;
②若甲、丙兩瓷磚單價之和為300元/m2 , 乙、丙瓷磚單價之比為5:3,且區(qū)域Ⅰ的三種瓷磚總價為4800元,求丙瓷磚單價的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場元旦期間舉行優(yōu)惠活動,對甲、乙兩種商品實行打折出售,打折前,購買5間甲商品和1件乙商品需要84元,購買6件甲商品和3件乙商品需要108元,元旦優(yōu)惠打折期間,購買50件甲商品和50件乙商品僅需960元,這比不打折前節(jié)省多少錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,直線AB:y=﹣x+b交y軸于點A(0,4),交x軸于點B.
(1)求直線AB的表達式和點B的坐標;
(2)直線l垂直平分OB交AB于點D,交x軸于點E,點P是直線l上一動點,且在點D的上方,設點P的縱坐標為n.
①用含n的代數(shù)式表示△ABP的面積;
②當S△ABP=8時,求點P的坐標;
③在②的條件下,以PB為斜邊在第一象限作等腰直角△PBC,求點C的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com