【題目】已知,△ABC為等邊三角形,點D為直線BC上一動點(點D不與B,C重合).以AD為邊作菱形ADEF,使∠DAF=60°,連接CF.
初步感知:
(1)如圖1,當點D在邊BC上時,①求證:∠ADB=∠AFC;②請直接判斷結(jié)論∠AFC=∠ACB+∠DAC是否成立;
(2)如圖2,當點D在邊BC的延長線上時,其他條件不變,結(jié)論∠AFC=∠ACB+∠DAC是否成立?請寫出∠AFC、∠ACB、∠DAC之間存在的數(shù)量關系,并寫出證明過程;
(3)如圖3,當點D在邊CB的延長線上時,且點A、F分別在直線BC的異側(cè),其他條件不變,請補全圖形,并直接寫出∠AFC、∠ACB、∠DAC之間存在的等量關系.
【答案】
(1)
①證明:∵△ABC為等邊三角形,
∴AB=AC,∠BAC=60°,
∵∠DAF=60°,
∴∠BAC=∠DAF,
∴∠BAD=∠CAF,
∵四邊形ADEF是菱形,
∴AD=AF,
在△ABD和△ACF中, ,
∴△ABD≌△ACF(SAS),
∴∠ADB=∠AFC,
②解:∠AFC=∠ACB+∠DAC成立.理由如下:
∵△ABD≌△ACF,
∴∠ADB=∠AFC,
∵∠ADB=∠ACB+∠DAC,
∴∠AFC=∠ACB+∠DAC
問題探究:
(2)
解:∠AFC=∠ACB+∠DAC不成立.
∠AFC、∠ACB、∠DAC之間的等量關系是∠AFC=∠ACB﹣∠DAC.理由如下:
∵△ABC為等邊三角形,
∴AB=AC,
∠BAC=60°,
∵∠BAC=∠DAF,
∴∠BAD=∠CAF,
∵四邊形ADEF是菱形,
∴AD=AF.
在△ABD和△ACF中, ,
∴△ABD≌△ACF(SAS).
∴∠ADB=∠AFC.
又∵∠ACB=∠ADC+∠DAC,
∴∠AFC=∠ACB﹣∠DAC
類比分析:
(3)
解:補全圖形如圖所示:
∠AFC、∠ACB、∠DAC之間的等量關系是:∠AFC+∠DAC+∠ACB=180°;理由如下:
同(2)得:△ABD≌△ACF,
∴∠ADC=∠AFC,
∵∠ADC+∠ACB+∠DAC=180°,
∴∠AFC+∠DAC+∠ACB=180°.
【解析】(1)①由AB=AC,AD=AF,∠BAD=∠CAF,按照SAS判斷兩三角形全等得出∠ADB=∠AFC;②由全等三角形的性質(zhì)和三角形的外角性質(zhì)即可得出結(jié)論;(2)此題應先判斷得出正確的等量關系,然后再根據(jù)△ABD≌△ACF即可證明;(3)補全圖形后由圖形,由全等三角形的性質(zhì)和三角形內(nèi)角和定理即可得出∠AFC、∠ACB、∠DAC之間存在的等量關系.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,四邊形ABCD是正方形,點E是AB邊的中點,以AE為邊作正方形AEFG,連接DE,BG.
(1)發(fā)現(xiàn)
①線段DE、BG之間的數(shù)量關系是;
②直線DE、BG之間的位置關系是 .
(2)探究
如圖2,將正方形AEFG繞點A逆時針旋轉(zhuǎn),(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.
(3)應用
如圖3,將正方形AEFG繞點A逆時針旋轉(zhuǎn)一周,記直線DE與BG的交點為P,若AB=4,請直接寫出點P到CD所在直線距離的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=( 。
A. 76° B. 78° C. 80° D. 82°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】重陽節(jié)期間,某單位組織本單位退休職工前去距離商丘480千米的信陽雞公山登高旅游,由于人數(shù)較多,共租用甲、乙兩輛長途汽車沿同一路線趕赴景點.圖中的折線、線段分別表示甲、乙兩車所走的路程y甲(千米),y乙(千米)與時間x(小時)之間的函數(shù)關系對應的圖象.請根據(jù)圖象所提供的信息,解決下列問題:
(1)由于汽車發(fā)生故障,甲車在途中停留了小時;
(2)甲車排除故障后,立即提速趕往景點.請問甲車在排除故障時,距出發(fā)點的路程是多少千米?
(3)為了保證及時聯(lián)絡,甲、乙車在第一次相遇時約定此后兩車之間的路程不超過35千米,請通過計算說明,按圖象所表示的走法是否符合約定.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的口袋里裝有紅、黃、綠三種顏色的球(除顏色不同外其余都相同),其中紅球有2個,黃球有1個,從中任意捧出1球是紅球的概率為 .
(1)試求袋中綠球的個數(shù);
(2)第1次從袋中任意摸出1球(不放回),第2次再任意摸出1球,請你用畫樹狀圖或列表格的方法,求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一只甲蟲在5×5的方格(每小格邊長為1)上沿著網(wǎng)格線運動.它從A處出發(fā)去看望B、C、D處的其它甲蟲,規(guī)定:向上向右走為正,向下向左走為負.如果從A到B記為:A→B(+1,+4),從B到A記為:B→A(-1,-4),其中第一個數(shù)表示左右方向,第二個數(shù)表示上下方向.
(1)圖中A→C( , ),B→C( , ),C→ (+1, );
(2)若這只甲蟲從A處去甲蟲P處的行走路線依次為(+2,+2),(+2,-1),(-2,+3),(-1,-2),請在圖中標出P的位置;
(3)若這只甲蟲的行走路線為A→B→C→D,請計算該甲蟲走過的路程;
(4)若圖中另有兩個格點M、N,且M→A(3-a,b-4),M→N(5-a,b-2),則N→A應記為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】松山區(qū)種子培育基地用A,B,C三種型號的甜玉米種子共1500粒進行發(fā)芽試驗,從中選出發(fā)芽率高的種子進行推廣,通過試驗知道,C型號種子的發(fā)芽率為80%,根據(jù)試驗數(shù)據(jù)繪制了下面兩個不完整的統(tǒng)計圖:
(1)求C型號種子的發(fā)芽數(shù);
(2)通過計算說明,應選哪種型號的種子進行推廣?
(3)如果將所有已發(fā)芽的種子放在一起,從中隨機取出一粒,求取到C型號發(fā)芽種子的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com