【題目】某水果批發(fā)商場經(jīng)銷一種高檔水果,商場為了在中秋節(jié)和國慶節(jié)期間擴(kuò)大銷量,將售價從原來的每千克40元經(jīng)兩次調(diào)價后調(diào)至每千克32.4元.
(1)若該商場兩次調(diào)次的降價率相同,求這個降價率;
(2)現(xiàn)在假期結(jié)束了,商場準(zhǔn)備適當(dāng)漲價,如果現(xiàn)在每千克盈利10元,每天可售出500千克,經(jīng)市場調(diào)查發(fā)現(xiàn),在進(jìn)貨不變的情況下,若每千克漲價1元,日銷量將減少20千克,現(xiàn)該商場要保證每天盈利6000元,同時又要使顧客得到實(shí)惠,那么每千克應(yīng)漲價多少元?
【答案】(1)10%;(2)每千克水果應(yīng)漲價5元
【解析】
(1) 設(shè)這個降價率為,根據(jù)每千克40元經(jīng)兩次調(diào)價后調(diào)至每千克32.4,列出方程求解即可;
(2)根據(jù)商場要保證每天盈利6000元,列出一元二次方程,然后求出其解,最后根據(jù)題意確定其值.
解:(1)設(shè)這個降價率為,由題意得
;
解得:,(舍去)
答:這個降價率為10%
(2)設(shè)每千克水果應(yīng)漲價元,
依題意得方程:,
整理,得,
解這個方程,得,.
要使顧客得到實(shí)惠,應(yīng)取.
答:每千克水果應(yīng)漲價5元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC中點(diǎn),兩邊PE,PF分別交AB,AC于點(diǎn)E,F,給出以下五個結(jié)論:①△PFA≌△PEB,②EF=AP,③△PEF是等腰直角三角形,④當(dāng)∠EPF在△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(點(diǎn)E不與A,B重合),S四邊形AEPF=S△ABC,上述結(jié)論中始終正確有 ( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市擬于中秋節(jié)前天里銷售某品牌月餅,其進(jìn)價為元/.設(shè)第天的銷售價格為(元/),銷售量為.該超市根據(jù)以往的銷售經(jīng)驗(yàn)得出以下的銷售規(guī)律:①當(dāng)時,;當(dāng)時,與滿足一次函數(shù)關(guān)系,且當(dāng)時,;時,.②與的關(guān)系為.
(1)當(dāng)時,與的關(guān)系式為 ;
(2)為多少時,當(dāng)天的銷售利潤(元)最大?最大利潤為多少?
(3)若超市希望第天到第天的日銷售利潤(元)隨的增大而增大,則需要在當(dāng)天銷售價格的基礎(chǔ)上漲元/,求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】臺州人民翹首以盼的樂清灣大橋于2018年9月28日正式通車,經(jīng)統(tǒng)計分析,大橋上的車流速度(千米/小時)是車流密度(輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到220輛/千米的時候就造成交通堵塞,此時車流速度為0千米/小時;當(dāng)車流密度不超過20輛/千米,車流速度為80千米/小時,研究證明:當(dāng)時,車流速度是車流密度的一次函數(shù).
(1)求大橋上車流密度為50/輛千米時的車流速度;
(2)在某一交通高峰時段,為使大橋上的車流速度大于60千米/小時且小于80千米/小時,應(yīng)把大橋上的車流密度控制在什么范圍內(nèi)?
(3)車流量(輛/小時)是單位時間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),即:車流量車流速度車流密度,求大橋上車流量的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 中,∠C=90°,AC=3cm,BC=4cm,動點(diǎn) P 從點(diǎn) B 出發(fā)以 2cm/s 速度向點(diǎn) c 移動,同時動點(diǎn) Q 從 C 出發(fā)以 1cm/s 的速度向點(diǎn) A 移動, 設(shè)它們的運(yùn)動時間為 t.
(1)根據(jù)題意知:CQ= ,CP= ;(用含 t 的代數(shù)式表示)
(2)t 為何值時,△CPQ 的面積等于△ABC 面積的?
(3)運(yùn)動幾秒時,△CPQ 與△CBA 相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,點(diǎn)D在AC邊上一點(diǎn),連接BD,以BD為邊在AB的左側(cè)作等邊△DEB,連接AE,求證:AB平分∠EAC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出
(1)如圖1,在△ABC中,∠A=75°,∠C=60°,AC=6,求△ABC的外接圓半徑R的值;
問題探究
(2)如圖2,在△ABC中,∠BAC=60°,∠C=45°,AC=8,點(diǎn)D為邊BC上的動點(diǎn),連接AD以AD為直徑作⊙O交邊AB、AC分別于點(diǎn)E、F,接E、F,求EF的最小值;
問題解決
(3)如圖3,在四邊形ABCD中,∠BAD=90°,∠BCD=30°,AB=AD,BC+CD=12,連接AC,線段AC的長是否存在最小值,若存在,求最小值:若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,C為⊙O上一點(diǎn),∠OAC=58°.
(Ⅰ)如圖①,過點(diǎn)C作⊙O的切線,與BA的延長線交于點(diǎn)P,求∠P的大;
(Ⅱ)如圖②,P為AB上一點(diǎn),CP延長線與⊙O交于點(diǎn)Q.若AQ=CQ,求∠APC的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,E為斜邊AB的中點(diǎn),點(diǎn)P是射線BC上的一個動點(diǎn),連接AP、PE,將△AEP沿著邊PE折疊,折疊后得到△EPA′,當(dāng)折疊后△EPA′與△BEP的重疊部分的面積恰好為△ABP面積的四分之一,則此時BP的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com