【題目】如圖,在△ABC中,∠ACB=90°,BC=6cm,AC=8cm,點O為AB的中點,連接CO.點M在CA邊上,從點C以1cm/秒的速度沿CA向點A運動,設(shè)運動時間為t秒.
(1)當∠AMO=∠AOM時,求t的值;
(2)當△COM是等腰三角形時,求t的值.
【答案】
(1)解:∵AC=8,BC=6,∠ACB=90°,
∴AB= =10,
∵O為AB中點,
∴AO= AB=5,
∵AO=AM,
∴AM=5,
∴CM=3,
∴t=3;
(2)解:①當CO=CM時,CM=5,
∴t=5
②當MC=MO時,t2=32+(4﹣t)2,
解得:t= ;
③當CO=OM時,M與A點重合,
∴t=8;
綜上所述,當△COM是等腰三角形時,t的值為5或 或81.
【解析】(1)由勾股定理求出AB,由直角三角形的性質(zhì)得出AO=5,求出AM=5,得出CM=3即可;(2)分三種情況討論,分別求出t的值即可.
【考點精析】利用等腰三角形的性質(zhì)和勾股定理的概念對題目進行判斷即可得到答案,需要熟知等腰三角形的兩個底角相等(簡稱:等邊對等角);直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某同學把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是( )
A.帶①去
B.帶②去
C.帶③去
D.帶①和②去
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學之道在于悟.希望同學們在問題(1)解決過程中有所悟,再繼續(xù)探索研究問題(2).
(1)如圖①,∠B=∠C,BD=CE,AB=DC. ①求證:△ADE為等腰三角形.
②若∠B=60°,求證:△ADE為等邊三角形.
(2)如圖②,射線AM與BN,MA⊥AB,NB⊥AB,點P是AB上一點,在射線AM與BN上分別作點C、點 D 滿足:△CPD為等腰直角三角形.(要求:利用直尺與圓規(guī),不寫作法,保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中正確的有( )
A.長度相等的弧是等弧B.相等的圓心角所對的弦相等
C.等邊三角形的外心與內(nèi)心重合D.任意三點可以確定一個圓
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把“等角的余角相等”改寫成“如果……那么……”的形式是_________,________,該命題是 ___命題(填“真”或“假”).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com