27、如圖,已知等邊△ABC和等邊△DBC有公共的底邊BC.

(1)以圖1中的某個點為旋轉中心,旋轉△DBC,就能使△DBC與△ABC重合,則滿足題意的點為
B點、C點、BC的中點
;(寫出所有的這種點)
(2)如圖2,已知B1是BC的中點,現(xiàn)沿著由點B到點B1的方向,將△DBC平移到△D1B1C1的位置.請你判斷:得到的四邊形ABD1C1是平行四邊形嗎?說明你的理由.
分析:(1)根據(jù)等邊三角形的性質,得到四邊形ABCD是菱形,從而再根據(jù)菱形是中心對稱圖形,得到旋轉中心有B點、C點、BC的中點;
(2)根據(jù)平移的性質,得到BB1=CC1,根據(jù)等邊三角形的性質,得到AC=B1D1,∠BB1D1=∠ACC1,從而得到△BB1D1≌△ACC1,則AB=C1D1,再根據(jù)兩組對邊分別平行的四邊形是平行四邊形即可證明.
解答:解:(1)∵等邊△ABC和等邊△DBC有公共的底邊BC,
∴AB=BC=CD=AD,
∴四邊形ABCD是菱形.
∴要旋轉△DBC,使△DBC與△ABC重合,有三點分別為:B點、C點、BC的中點;

(2)四邊形ABD1C1是平行四邊形.理由如下:
據(jù)平移的性質,得到BB1=CC1
根據(jù)等邊三角形的性質,得到AC=B1D1,∠BB1D1=∠ACC1
∴△BB1D1≌△ACC1,
∴AC1=BD1,
又AB=C1D1,
∴四邊形ABD1C1是平行四邊形.
故答案為B點、C點、BC的中點.
點評:此題綜合考查了平行四邊形的判定、等邊三角形的性質、平移的性質以及旋轉的性質.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知等邊三角形ABC的中位線DE的長為1,
則下面結論中正確的是
 
.(填序號)精英家教網(wǎng)
①AB=2;②△DAE≌△BAC;
③△DAE的周長與△BAC的周長之比為1:3;
④△DAE的面積與△BAC的面積之比為1:4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知等邊三角形ABC的邊長為2,AD是BC邊上的高.
(1)在△ABC內部作一個矩形EFGH(如圖①),其中E、H分別在邊AB、AC上,F(xiàn)G在邊BC上.
①設矩形的一邊FG=x,那么EF=
 
;(用含有x的代數(shù)式表示)精英家教網(wǎng)
②設矩形的面積為y,當x取何值時,y的值最大,最大值是多少?
(2)當矩形EFGH面積最大時,請在圖②中畫出此時點E的位置.(要求尺規(guī)作圖,保留作圖痕跡,并簡要說明確定點E的方法)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•黃浦區(qū)二模)如圖,已知等邊△ABC的邊長為1,設
n
=
AB
+
BC
,那么向量
n
的模|
n
|=
1
1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2007•臨夏州)[(1)-(3),10分]如圖,已知等邊△ABC和點P,設點P到△ABC三邊AB、AC、BC(或其延長線)的距離分別為h1、h2、h3,△ABC的高為h.
在圖(1)中,點P是邊BC的中點,此時h3=0,可得結論:h1+h2+h3=h.
在圖(2)--(5)中,點P分別在線段MC上、MC延長線上、△ABC內、△ABC外.
(1)請?zhí)骄浚簣D(2)--(5)中,h1、h2、h3、h之間的關系;(直接寫出結論)
(2)證明圖(2)所得結論;
(3)證明圖(4)所得結論.
(4)在圖(6)中,若四邊形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,點P在梯形內,且點P到四邊BR、RS、SC、CB的距離分別是h1、h2、h3、h4,橋形的高為h,則h1、h2、h3、h4、h之間的關系為:
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
;圖(4)與圖(6)中的等式有何關系?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知等邊三角形ABC的邊長為10,點P、Q分別為邊AB、AC上的一個動點,點P從點B出發(fā)以1cm/s的速度向點A運動,點Q從點C出發(fā)以2cm/s的速度向點A運動,連接PQ,以Q為旋轉中心,將線段PQ按逆時針方向旋轉60°得線段QD,若點P、Q同時出發(fā),則當運動
10
3
10
3
s時,點D恰好落在BC邊上.

查看答案和解析>>

同步練習冊答案