【題目】如圖,BE是⊙O的直徑,點A和點D是⊙O上的兩點,過點A作⊙O的切線交BE延長線于點C,

(1)若∠ADE28°,求∠C的度數(shù);

(2)AC6,CE3,求⊙O半徑的長.

【答案】(1)C34°(2)O半徑的長是

【解析】

(1)連接OA,根據圓周角定理求出∠AOC,根據切線的性質求出∠OAC,根據三角形內角和定理求出即可;

(2)OAOEr,根據勾股定理得出方程,求出方程的解即可.

解:(1)如圖,連接OA,

∵∠ADE28°,

∴由圓周角定理得:∠AOC2ADE56°

AC切⊙OA,

∴∠OAC90°,

∴∠C180°﹣∠AOC﹣∠OAC180°56°90°34°

(2)OAOEr,

RtOAC中,由勾股定理得:OA2+AC2OC2

r2+62(r+3)2,

解得:r

答:⊙O半徑的長是

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的兩邊OAOC分別在x軸和y軸上,并且OA5,OC3.若把矩形OABC繞著點O逆時針旋轉,使點A恰好落在BC邊上的A1處,則點C的對應點C1的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一張長為8cm,寬為6cm的長方形紙片上,現(xiàn)要剪下一個腰長為5cm的等腰三角形(要求:等腰三角形的一個頂點與長方形的一個頂點重合,其余的兩個頂點在長方形的邊上).則剪下的等腰三角形的底邊長可以是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)ykx+b(k0)與反比例函數(shù)y(m0)的圖象相交于A、B兩點,且點A的坐標是(1,2),點B的坐標是(2,w)

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)x軸的正半軸上找一點C,使△AOC的面積等于△ABO的面積,并求出點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E是邊BC上一點,且BECE13DEAC于點F,若DE10,則CF等于( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形A1B1C1O,A2B2C2C1A3B3C3C2,按如圖的方式放置.點A1,A2A3,和點C1C2,C3,分別在直線y=x+1x軸上,則點B6的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠現(xiàn)在平均每天比原計劃多生產 50 臺機器,現(xiàn)在生產 600 臺機器所需時間與原計劃生產 450 臺機器所需時間相同.

(1)現(xiàn)在平均每天生產多少臺機器;

(2)生產 3000 臺機器,現(xiàn)在比原計劃提前幾天完成.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將面積為的矩形ABCD的四邊BACB、DC、AD分別延長至E、FG、H,使得AE=CGBF=BC, DH=AD,連接EF, FG,GH,HE,AF,CH.若四邊形EFGH為菱形,,則菱形EFGH的面積是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知動點P2cm/s的速度沿如圖所示的邊框從B-C-D-E-F-A的路徑運動,記ABP的面積為S (cm2), S與運動時間t (s)的關系如圖所示,若AB=6cm,請回答下列問題:

(1)如圖中BC=______cm, CD=______cm,DE=______cm

(2)求出如圖中邊框所圍成圖形的面積;

(3)求如圖中m、n的值;

(4)分別求出當點P在線段BCDE上運動時St的關系式,并寫出t的取值范圍.

查看答案和解析>>

同步練習冊答案