已知:線段OAOB,點COB中點,D為線段OA上一點。連結(jié)AC,

  BD交于點P。

  (1) 如圖1,當(dāng)OA=OB,且DOA中點時,求的值;

  (2) 如圖2,當(dāng)OA=OB,且=時,求tanBPC的值;

  (3) 如圖3,當(dāng)ADAOOB=1:n:2時,直接寫出tan?BPC的值。


解:(1) 延長AC至點E,使CE=CA,連接BE,∵COB中點,

      ∴△BCE≌△OCA,∴BE=OAE=OAC,∴BE//OA,

      ∴△APD∽△EPB,∴=。又∵DOA中點,

      OA=OB,∴==。∴==,∴=2。


 

  (2) 延長AC至點H,使CH=CA,連結(jié)BH,∵COB中點,

     ∴△BCH≌△OCA,∴CBH=O=90°,BH=OA。由=,

     設(shè)AD=t,OD=3t,則BH=OA=OB=4t。在Rt△BOD中,

     BD==5t,∵OA//BH,∴△HBP∽△ADP

     ∴===4!BP=4PD=BD=4t,∴BH=BP。

     ∴tanBPC=tanH===。

  


(3) tanBPC=。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:線段OA⊥OB,點C為OB中點,D為線段OA上一點.連接AC,BD交于點P.
(1)如圖1,當(dāng)OA=OB,且D為OA中點時,求
AP
PC
的值;
(2)如圖2,當(dāng)OA=OB,且
AD
AO
=
1
4
時,求tan∠BPC的值.
(3)如圖3,當(dāng)AD:AO:OB=1:n:2
n
時,直接寫出tan∠BPC的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:線段OA⊥OB,點C為OB中點,D為線段OA上一點.連接AC,BD交于點P.
(1)如圖1,當(dāng)OA=OB,且
AD
AO
=
1
2
時,求
AP
PC
的值;
(2)如圖2,當(dāng)OA=OB,且
AD
AO
=
1
4
時,①
AP
PC
=
2
3
2
3
;②證明:∠BPC=∠A;
(3)如圖3,當(dāng)AD:AO:OB=1:n:2
n
時,直接寫出tan∠BPC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:線段OA⊥OB,點C為OB中點,D為線段OA上一點.連接AC,BD交于點P.
(1)如圖1,當(dāng)OA=OB,且數(shù)學(xué)公式=數(shù)學(xué)公式時,求數(shù)學(xué)公式的值;
(2)如圖2,當(dāng)OA=OB,且數(shù)學(xué)公式時,①數(shù)學(xué)公式=______;②證明:∠BPC=∠A;
(3)如圖3,當(dāng)AD:AO:OB=1:n:數(shù)學(xué)公式時,直接寫出tan∠BPC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第24章《相似形》中考題集(03):24.1 比例線段(解析版) 題型:解答題

已知:線段OA⊥OB,點C為OB中點,D為線段OA上一點.連接AC,BD交于點P.
(1)如圖1,當(dāng)OA=OB,且D為OA中點時,求的值;
(2)如圖2,當(dāng)OA=OB,且時,求tan∠BPC的值.
(3)如圖3,當(dāng)AD:AO:OB=1:n:時,直接寫出tan∠BPC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年5月中考數(shù)學(xué)模擬試卷(4)(解析版) 題型:解答題

已知:線段OA⊥OB,點C為OB中點,D為線段OA上一點.連接AC,BD交于點P.
(1)如圖1,當(dāng)OA=OB,且D為OA中點時,求的值;
(2)如圖2,當(dāng)OA=OB,且時,求tan∠BPC的值.
(3)如圖3,當(dāng)AD:AO:OB=1:n:時,直接寫出tan∠BPC的值.

查看答案和解析>>

同步練習(xí)冊答案