【題目】如圖是二次函數(shù)的圖象,其對稱軸為x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(,y1),(,y2)是拋物線上兩點,則y1<y2,其中正確的結(jié)論有( )個
A.1B.2C.3D.4
【答案】A
【解析】
①由拋物線的開口方向、對稱軸即與y軸交點的位置,可得出a<0、b>0、c>0,進而即可得出abc<0,結(jié)論①錯誤;②由拋物線的對稱軸為直線x=1,可得出2a+b=0,結(jié)論②正確;③由拋物線的對稱性可得出當(dāng)x=2時y>0,進而可得出4a+2b+c>0,結(jié)論③錯誤;④找出兩點離對稱軸的距離,比較后結(jié)合函數(shù)圖象可得出y1=y2,結(jié)論④錯誤.綜上即可得出結(jié)論.
解:①∵拋物線開口向下,對稱軸為直線x=1,與y軸交于正半軸,
∴a<0,=1,c>0,
∴b=-2a>0,
∴abc<0,結(jié)論①錯誤;
②拋物線對稱軸為直線x=1,
∴=1,
∴b=-2a,
∴2a+b=0,結(jié)論②正確;
③∵拋物線的對稱軸為直線x=1,與x軸的一個交點坐標是(-1,0),
∴另一個交點坐標是(3,0),
∴當(dāng)x=2時,y>0,
∴4a+2b+c>0,結(jié)論③錯誤;
④=,,
∵拋物線的對稱軸為直線x=1,拋物線開口向下,
∴y1=y2,結(jié)論④錯誤;
綜上所述:正確的結(jié)論有②,1個,
故選擇:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為慶祝中華人民共和國建國70周年,某校從A、B兩位男生和D、E兩位女生中選派學(xué)生,參加全區(qū)中小學(xué)“我和我的祖國”演講比賽.
(1)如果選派一位學(xué)生參賽,那么選派到的代表是A同學(xué)的概率是 ;
(2)如果選派兩位學(xué)生參賽,用樹狀圖或列表法,求恰好選派一男一女兩位同學(xué)參賽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李在景區(qū)銷售一種旅游紀念品,已知每件進價為6元,當(dāng)銷售單價定為8元時,每天可以銷售200件.市場調(diào)查反映:銷售單價每提高1元,日銷量將會減少10件,物價部門規(guī)定:銷售單價不能超過12元,設(shè)該紀念品的銷售單價為x(元),日銷量為y(件),日銷售利潤為w(元).
(1)求y與x的函數(shù)關(guān)系式.
(2)要使日銷售利潤為720元,銷售單價應(yīng)定為多少元?
(3)求日銷售利潤w(元)與銷售單價x(元)的函數(shù)關(guān)系式,當(dāng)x為何值時,日銷售利潤最大,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】市實驗中學(xué)計劃在暑假第二周的星期一至星期五開展暑假社會實踐活動,要求每位學(xué)生選擇兩天參加活動.
(1)甲同學(xué)隨機選擇連續(xù)的兩天,其中有一天是星期三的概率是 ;
(2)乙同學(xué)隨機選擇兩天,其中有一天是星期三的概率是多少?(列表或畫樹形圖或列舉)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】尺規(guī)作圖:如圖,AD為⊙O的直徑。
(1)求作:⊙O的內(nèi)接正六邊形ABCDEF.(要求:不寫作法,保留作圖痕跡);
(2)已知連接DF,⊙O的半徑為4,求DF的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某反比例函數(shù)圖象的一支經(jīng)過點A(2,3)和點B(點B在點A的右側(cè)),作BC⊥y軸,垂足為點C,連結(jié)AB,AC.
(1)求該反比例函數(shù)的解析式;
(2)若△ABC的面積為6,求直線AB的表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架.它的代數(shù)成就主要包括開方術(shù)、正負術(shù)和方程術(shù).這本書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.用現(xiàn)代白話文可以這樣理解:甲口袋中裝有黃金9枚(每枚黃金重量相同),乙口袋中裝有白銀11枚(每枚白銀重量相同),用稱分別稱這兩個口袋的重量,它們的重量相等.若從甲口袋中拿出1枚黃金放入乙口袋中,乙口袋中拿出1枚白銀放入甲口袋中,則甲口袋的重量比乙口袋的重量輕了13兩(袋子重量忽略不計).問一枚黃金和一枚白銀分別重多少兩?請根據(jù)題意列方程(組)解之.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與軸交于A,B兩點(A在B左邊),與軸交于C點,頂點為P,OC=2AO.
(1)求與滿足的關(guān)系式;
(2)直線AD//BC,與拋物線交于另一點D,△ADP的面積為,求的值;
(3)在(2)的條件下,過(1,-1)的直線與拋物線交于M、N兩點,分別過M、N且與拋物線僅有一個公共點的兩條直線交于點G,求OG長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=60°,以O為圓心,以任意長為半徑作弧,交OA,OB于點M,N,分別以點M,N為圓心,以大于MN的長度為半徑作弧,兩弧在∠AOB內(nèi)交于點P,以OP為邊作∠POC=15°,則∠BOC的度數(shù)為( )
A.15°B.45°C.15°或30°D.15°或45°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com