【題目】如圖,已知AB為⊙O的直徑,點(diǎn)C為半圓ACB上的動(dòng)點(diǎn)(不與A、B兩點(diǎn)重合),過(guò)點(diǎn)C作弦CD⊥AB,∠OCD的平分線交圓于點(diǎn)P,則點(diǎn)P的位置有何規(guī)律?請(qǐng)證明你的結(jié)論.

【答案】點(diǎn)P為半圓AB的中點(diǎn).

【解析】

連接OP,如圖,根據(jù)角平分線的定義得∠PCD=PCO,而∠PCO=OPC,則∠PCD=OPC,根據(jù)平行線的判定得OPCD,由于CDAB,根據(jù)平行線的性質(zhì)得到OPAB,然后根據(jù)垂徑定理即可得到弧PA=PB.

點(diǎn)P為半圓AB的中點(diǎn).理由如下:

連接OP,如圖,

∵∠OCD的平分線交圓于點(diǎn)P,

∴∠PCD=PCO,

OC=OP,

∴∠PCO=OPC,

∴∠PCD=OPC,

OPCD,

CDAB,

OPAB,

∴弧PA=PB,

即點(diǎn)P為半圓的中點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=-x2bxc的圖像經(jīng)過(guò)點(diǎn)(0,3)、(-10).

1求二次函數(shù)的表達(dá)式;

2)在給定的平面直角坐標(biāo)系中,畫(huà)出這個(gè)二次函數(shù)的圖像;

3)根據(jù)圖像,直接寫(xiě)出當(dāng)x滿足什么條件時(shí),y0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為一圓洞門(mén).工匠在建造過(guò)程中需要一根橫梁AB和兩根對(duì)稱的立柱CE、DF來(lái)支撐,點(diǎn)A、BC、DO上,CEABE,DFABF,且AB2,EF,120°.

(1)求出圓洞門(mén)O的半徑;

(2)求立柱CE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+4 經(jīng)過(guò)點(diǎn)A(﹣3,0),點(diǎn) B 在拋物線上,CBx軸,且AB 平分CAO.則此拋物線的解析式是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y1=ax2+bx+c(a≠0,a≠c)過(guò)點(diǎn)A(1,0),頂點(diǎn)為 B,且拋物線不過(guò)第三象限.

(1)過(guò)點(diǎn)B作直線l垂直于x軸于點(diǎn)C,若點(diǎn)C坐標(biāo)為(2,0),a=1,求b和c的值;

(2)比較與0的大小,并說(shuō)明理由;

(3)若直線y2=2x+m經(jīng)過(guò)點(diǎn)B,且與拋物線交于另外一點(diǎn)D(,b+8),求當(dāng)≤x<5時(shí)y1的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=3.若把矩形OABC繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)A恰好落在BC邊上的A1處,則點(diǎn)C的對(duì)應(yīng)點(diǎn)C1的坐標(biāo)為(  )

A. (﹣ B. (﹣ C. (﹣ D. (﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線,分別相切于點(diǎn)和點(diǎn).點(diǎn)和點(diǎn)分別是上的動(dòng)點(diǎn),沿平移.的半徑為,.下列結(jié)論錯(cuò)誤的是(

A. B. 的距離為

C. ,則相切 D. 相切,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知線段AB,P1是AB的黃金分割點(diǎn)(AP1>BP1),點(diǎn)O是AB的中點(diǎn),P2是P1關(guān)于點(diǎn)O的對(duì)稱點(diǎn).求證:P1B是P2B和P1P2的比例中項(xiàng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】【提出問(wèn)題】

1)如圖1,在等邊ABC中,點(diǎn)MBC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等邊AMN,連結(jié)CN.求證:ABC=ACN

【類比探究】

2)如圖2,在等邊ABC中,點(diǎn)MBC延長(zhǎng)線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論ABC=ACN還成立嗎?請(qǐng)說(shuō)明理由.

【拓展延伸】

3)如圖3,在等腰ABC中,BA=BC,點(diǎn)MBC上的任意一點(diǎn)(不含端點(diǎn)BC),連結(jié)AM,以AM為邊作等腰AMN,使頂角AMN=ABC.連結(jié)CN.試探究ABCACN的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案