【題目】如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),OF⊥BC于點(diǎn)F,交⊙O于點(diǎn)E,AE與BC交于點(diǎn)H,點(diǎn)D為OE的延長(zhǎng)線(xiàn)上一點(diǎn),且∠ODB=∠AEC.

求證:(1)BD是⊙O的切線(xiàn);(2)CE2=EH·EA.

【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.

【解析】試題分析:1)由圓周角定理和已知條件證出∠ODB=ABC,再證出∠ABC+DBF=90°,即∠OBD=90°,即可得出BD是⊙O的切線(xiàn);(2)連接AC,由垂徑定理得出,即可得出∠CAE=ECB,再由公共角∠CEA=HEC,證明△CEH∽△AEC,得出對(duì)應(yīng)邊成比例,即可得出結(jié)論.

試題解析:(1)∵∠ODBAEC,AECABC,

∴∠ODBABC,

OFBC,

∴∠BFD90°,

∴∠ODBDBF90°,

∴∠ABCDBF90°,即∠OBD90°,

BDOB,

BD是⊙O的切線(xiàn)。 

(2)連接AC,

OFBC,

∴∠ECBCAE,

又∵∠HECCEA,

∴△CEH∽△AEC,

,

CE2EH·EA.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線(xiàn)m:y=2x+2是直線(xiàn)n向右平移2個(gè)單位再向下平移5個(gè)單位得到的,而(2a,7)在直線(xiàn)n上,則a=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為建設(shè)秀美龍江,某學(xué)校組織師生參加一年一度的植樹(shù)綠化工作,準(zhǔn)備租用7輛客車(chē),現(xiàn)有甲、乙兩種客車(chē),它們的載客量和租金如下表,設(shè)租用甲種客車(chē)x輛,租車(chē)總費(fèi)用為y元,

甲種客車(chē)

乙種客車(chē)

載客量/(人/輛)

60

40

租金/(元/輛)

360

300

(1)求出y(單位:元)與x(單位:輛)之間的函數(shù)關(guān)系式。

(2)若該校共有350名師生前往參加勞動(dòng),共有多少種租車(chē)方案?

(3)帶隊(duì)老師從學(xué)校預(yù)支租車(chē)費(fèi)用2400元,試問(wèn)預(yù)支的租車(chē)費(fèi)用是否可有結(jié)余?若有結(jié)余,最多可結(jié)余多少元。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線(xiàn)y=﹣x+b與坐標(biāo)軸交于C,D兩點(diǎn),直線(xiàn)AB與坐標(biāo)軸交于A,B兩點(diǎn),線(xiàn)段OA,OC的長(zhǎng)是方程x2﹣3x+2=0的兩個(gè)根(OA>OC).

(1)求點(diǎn)A,C的坐標(biāo);

(2)直線(xiàn)AB與直線(xiàn)CD交于點(diǎn)E,若點(diǎn)E是線(xiàn)段AB的中點(diǎn),反比例函數(shù)y=(k≠0)的圖象的一個(gè)分支經(jīng)過(guò)點(diǎn)E,求k的值;

(3)在(2)的條件下,點(diǎn)M在直線(xiàn)CD上,坐標(biāo)平面內(nèi)是否存在點(diǎn)N,使以點(diǎn)B,E,M,N為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫(xiě)出滿(mǎn)足條件的點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一元二次方程ax2+bx+c0中的a3b0,c=﹣2,則這個(gè)一元二次方程是(  )

A.3x220B.3x2+20C.3x2+x0D.3x2x0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】巴黎與北京的時(shí)差為﹣7小時(shí)(正數(shù)表示同一時(shí)刻比北京時(shí)間早的時(shí)數(shù)),如果北京時(shí)間11月11日14:00,那么巴黎時(shí)間是( )
A.11月11日21時(shí)
B.11月11日7時(shí)
C.11月10日7時(shí)
D.11月11日5時(shí)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,O是矩形ABCD的對(duì)角線(xiàn)的交點(diǎn),作DE∥AC,CE∥BD,DE、CE相交于點(diǎn)E.求證:
(1)四邊形OCED是菱形.
(2)連接OE,若AD=4,CD=3,求菱形OCED的周長(zhǎng)和面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的邊BCx軸重合,連接對(duì)角線(xiàn)BDy軸于點(diǎn)E,過(guò)點(diǎn)AAGBD于點(diǎn)G,直線(xiàn)GFAD于點(diǎn)F,AB、OC的長(zhǎng)分別是一元二次方程x-5x+6=0的兩根(ABOC),且tanADB=.

(1)求點(diǎn)E、點(diǎn)G的坐標(biāo);

(2)直線(xiàn)GFAGDAGFDGF兩個(gè)三角形,且SAGFSDGF =3:1,求直線(xiàn)GF的解析式;

(3)點(diǎn)Py軸上,在坐標(biāo)平面內(nèi)是否存在一點(diǎn)Q,使以點(diǎn)BD、PQ為頂點(diǎn)的四邊形是矩形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一元二次方程x2﹣4x+4=0的解是

查看答案和解析>>

同步練習(xí)冊(cè)答案