【題目】定義:如果三角形有一邊上的中線長恰好等于這邊的長,那么稱這個三角形為“和美三角形”,這條邊稱為“和美邊”,這條中線稱為“和美中線”.
理解:(1)請你在圖①中畫一個以AB為和美邊的和美三角形,使第三個頂點C落在格點上;
(2)如圖②,在Rt△ABC中,∠C=90°,.求證:△ABC是“和美三角形”.
運用:(3)已知,等腰△ABC是“和美三角形”,AB=AC=20,求底邊BC的長(畫圖解答).
【答案】(1)如圖;見解析;(2)見解析;(3)底邊BC的長為或.
【解析】
(1)根據(jù)“和美三角形”的定義畫出圖形即可.
(2)如圖②,根據(jù)定義Rt△ABC中,和美中線一定是較長直角邊上的中線.根據(jù)“和美三角形”的定義證明即可.
(3)分兩種情況:如圖③,當(dāng)腰上的中線BD=AC時,則AB=BD,過B作BE⊥AD于E.如圖④,當(dāng)?shù)走吷系闹芯AD=BC時,則AD⊥BC,且AD=2BD,分別求解即可解決問題.
(1)如圖;
(2)證明:如圖②,
根據(jù)定義,
Rt△ABC中,
和美中線一定是較長直角邊上的中線;
取AC的中點D,連結(jié)BD,
設(shè)AC=2x,則CD=AD=x,
∵ ∴,
∴,
在Rt△BCD中,
∴BD=AC,
∴△ABC是“和美三角形”;
(3)分兩種情況:
如圖③,當(dāng)腰上的中線BD=AC時,則AB=BD,過B作BE⊥AD于E,
∵AB=AC=20,
∴BD=20,
,
∴CE=10+5=15,
∴Rt△BDE中,,
∴Rt△BCE中,
;
如圖④,當(dāng)?shù)走吷系闹芯AD=BC時,則AD⊥BC,且AD=2BD,
設(shè)BD=x,
則,
∴,
又∵x>0,∴,
∴.
綜上所述,底邊BC的長為或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD為正方形,點A的坐標(biāo)為(0,3),點B的坐標(biāo)為(0,﹣4),反比例﹣函數(shù)y=(k≠0)的圖象經(jīng)過點C.
(1)求反比例函數(shù)的解析式;
(2)點P是反比例函數(shù)在第二象限的圖象上的一點,若△PBC的面積等于正方形ABCD的面積,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x與反比例函數(shù)y=(x>0)的圖象交于點A(4,n),AB⊥x軸,垂足為B.
(1)求k的值;
(2)點C在AB上,若OC=AC,求AC的長;
(3)點D為x軸正半軸上一點,在(2)的條件下,若S△OCD=S△ACD,求點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近期,我市中小學(xué)廣泛開展了“傳承中華文化,共筑精神家園”愛國主義讀書教育活動,某中學(xué)為了解學(xué)生最喜愛的活動形式,以“我最喜愛的一種活動”為主題,進(jìn)行隨機(jī)抽樣調(diào)查,收集數(shù)據(jù)整理后,繪制出以下兩幅不完整的統(tǒng)計圖表,請根據(jù)圖中提供的信息,解答下面的問題:
最喜愛的一種活動統(tǒng)計表
活動形式 | 征文 | 講故事 | 演講 | 網(wǎng)上競答 | 其他 |
人數(shù) | 60 | 30 | 39 | a | b |
(1)在這次抽樣調(diào)查中,一共調(diào)查了多少名學(xué)生?扇形統(tǒng)計圖中“講故事”部分的圓心角是多少度?
(2)如果這所中學(xué)共有學(xué)生3800名,那么請你估計最喜愛征文活動的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為6的正方形紙片ABCD沿EF折疊(點E,F分別在邊AB,CD上),使點B落在AD邊上的點M處(點M不與A,D重),點C落在點N處,MN與CD交于點P, 連接MB,當(dāng)點M在邊AD上移動時.有下列結(jié)論:①BM=EF;②0<PF<3 ;③∠AMB=∠BMP;④△PDM的周長隨之改變.其中正確結(jié)論的序號是_______.(把你認(rèn)為正確的結(jié)論的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,點A與原點重合,點B在y軸的正半軸上,點D在x軸的負(fù)半軸上,將正方形ABCD繞點A逆時針旋轉(zhuǎn)30°至正方形AB'C′D′的位置,B'C′與CD相交于點M,則點M的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,點B的坐標(biāo)為(1,0).
(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1;
(2)畫出將△ABC繞原點O按逆時針旋轉(zhuǎn)90°所得的△A2B2C2,并寫出點C2的坐標(biāo);
(3)△A1B1C1與△A2B2C2成中心對稱嗎?若成中心對稱,寫出對稱中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AB=4cm,C為AB上一動點,過點C的直線交⊙O于D、E兩點,且∠ACD=60°,DF⊥AB于點F,EG⊥AB于點G,當(dāng)點C在AB上運動時,設(shè)AF=xcm,DE=ycm(當(dāng)x的值為0或3時,y的值為2),探究函數(shù)y隨自變量x的變化而變化的規(guī)律.
(1)通過取點、畫圖、測量,得到了x與y的幾組對應(yīng)值,如下表:
x/cm | 0 | 0.40 | 0.55 | 1.00 | 1.80 | 2.29 | 2.61 | 3 |
y/cm | 2 | 3.68 | 3.84 | 3.65 | 3.13 | 2.70 | 2 |
(2)建立平面直角坐標(biāo)系,描出以補全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:點F與點O重合時,DE長度約為 cm(結(jié)果保留一位小數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com