數(shù)軸上到原點(diǎn)的距離等于4的點(diǎn)所表示的數(shù)為( )
A.4
B.-4
C.2或-2
D.-4或4
【答案】分析:從原點(diǎn)向左數(shù)4個(gè)單位長度得-4,向右數(shù)4個(gè)單位長度得4,也就是絕對(duì)值為4的數(shù)是±4.
解答:解:與原點(diǎn)距離為4的點(diǎn)為:|4|,
∴這個(gè)數(shù)為±4.
故選D.
點(diǎn)評(píng):本題考查了數(shù)軸.通過數(shù)軸找這樣的數(shù),有助于對(duì)絕對(duì)值意義的理解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,有一直徑MN=4的半圓形紙片,其圓心為點(diǎn)P,從初始位置Ⅰ開始,在無滑動(dòng)的情況下沿?cái)?shù)軸向右翻滾至位置Ⅴ,其中,位置Ⅰ中的MN平行于數(shù)軸,且半⊙P與數(shù)軸相切于原點(diǎn)O;位置Ⅱ和位置Ⅳ中的MN垂直于數(shù)軸;位置Ⅲ中的MN在數(shù)軸上;位置Ⅴ中半⊙P與數(shù)軸相切于點(diǎn)A,且此時(shí)△MPA為等邊三角形.
解答下列問題:(各小問結(jié)果保留π)
(1)位置Ⅰ中的點(diǎn)O到直線MN的距離為
2
2
;位置Ⅱ中的半⊙P與數(shù)軸的位置關(guān)系是
相切
相切

(2)位置Ⅲ中的圓心P在數(shù)軸上表示的數(shù)為
π+2
π+2
;
(3)求OA的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

請(qǐng)你回憶一下上學(xué)期學(xué)習(xí)的有關(guān)絕對(duì)值的幾何意義等知識(shí),并解決下列問題:(1)在數(shù)軸上到原點(diǎn)距離等于的點(diǎn)表示實(shí)數(shù)________;

2)在數(shù)軸上作出到原點(diǎn)距離小于的點(diǎn)所表示的區(qū)域;

3)解不等式:①   

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本小題滿分10分)
如圖,有一直徑MN=4的半圓形紙片,其圓心為點(diǎn)P,從初始位置Ⅰ開始,在無滑動(dòng)的情況下沿?cái)?shù)軸向右翻滾至位置Ⅴ,其中,位置Ⅰ中的MN平行于數(shù)軸,且半⊙P與數(shù)軸相切于原點(diǎn)O;位置Ⅱ和位置Ⅳ中的MN垂直于數(shù)軸;位置Ⅲ中的MN在數(shù)軸上;位置Ⅴ中半⊙P與數(shù)軸相切于點(diǎn)A,且此時(shí)△MPA為等邊三角形.
解答下列問題:(各小問結(jié)果保留π)
(1)位置Ⅰ中的點(diǎn)O到直線MN的距離為   ;
位置Ⅱ中的半⊙P與數(shù)軸的位置關(guān)系是     
(2)位置Ⅲ中的圓心P在數(shù)軸上表示的數(shù)為   ;
(3)求OA的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆河北省石家莊市九年級(jí)第一次模擬考試數(shù)學(xué)卷 題型:選擇題

(本小題滿分10分)

如圖,有一直徑MN=4的半圓形紙片,其圓心為點(diǎn)P,從初始位置Ⅰ開始,在無滑動(dòng)的情況下沿?cái)?shù)軸向右翻滾至位置Ⅴ,其中,位置Ⅰ中的MN平行于數(shù)軸,且半⊙P與數(shù)軸相切于原點(diǎn)O;位置Ⅱ和位置Ⅳ中的MN垂直于數(shù)軸;位置Ⅲ中的MN在數(shù)軸上;位置Ⅴ中半⊙P與數(shù)軸相切于點(diǎn)A,且此時(shí)△MPA為等邊三角形.

解答下列問題:(各小問結(jié)果保留π)

(1)位置Ⅰ中的點(diǎn)O到直線MN的距離為    ;

位置Ⅱ中的半⊙P與數(shù)軸的位置關(guān)系是     

(2)位置Ⅲ中的圓心P在數(shù)軸上表示的數(shù)為   ;

(3)求OA的長.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年江蘇省鹽城市射陽縣特庸中學(xué)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如圖,有一直徑MN=4的半圓形紙片,其圓心為點(diǎn)P,從初始位置Ⅰ開始,在無滑動(dòng)的情況下沿?cái)?shù)軸向右翻滾至位置Ⅴ,其中,位置Ⅰ中的MN平行于數(shù)軸,且半⊙P與數(shù)軸相切于原點(diǎn)O;位置Ⅱ和位置Ⅳ中的MN垂直于數(shù)軸;位置Ⅲ中的MN在數(shù)軸上;位置Ⅴ中半⊙P與數(shù)軸相切于點(diǎn)A,且此時(shí)△MPA為等邊三角形.
解答下列問題:(各小問結(jié)果保留π)
(1)位置Ⅰ中的點(diǎn)O到直線MN的距離為______;位置Ⅱ中的半⊙P與數(shù)軸的位置關(guān)系是______;
(2)位置Ⅲ中的圓心P在數(shù)軸上表示的數(shù)為______;
(3)求OA的長.

查看答案和解析>>

同步練習(xí)冊答案