已知:關于x的一元二次方程(m-1)x2+(m-2)x-1=0(m為實數(shù))
(1)若方程有兩個不相等的實數(shù)根,求m的取值范圍;
(2)若m是整數(shù),且關于x的一元二次方程(m-1)x2+(m-2)x-1=0有兩個不相等的整數(shù)根,把拋物線y=(m-1)x2+(m-2)x-1向下平移3個單位長度,求平移后的解析式.
分析:(1)根據(jù)一元二次方程的定義和判別式的意義得到m-1≠0且△=(m-2)2-4(m-1)×(-1)=m2>0,然后解兩個不等式可得m≠1且m≠0;
(2)利用求根公式得到x=
-(m-2)±m(xù)
2(m-1)
,則x1=-1,x2=
1
m-1
,由于m為m≠1且m≠0的整數(shù),且方程有兩個不相等的整數(shù)根,則m=2,則拋物線變形為y=x2-1,
根據(jù)拋物線的幾何變換,把拋物線y=x2-1向下平移3個單位長度得y=x2-1-3.
解答:解:(1)根據(jù)題意得m-1≠0且△=(m-2)2-4(m-1)×(-1)=m2>0,
解得m≠1且m≠0,
即m的取值范圍為m≠1且m≠0;
(2)解一元二次方程(m-1)x2+(m-2)x-1=0得x=
-(m-2)±m(xù)
2(m-1)
,
∴x1=-1,x2=
1
m-1
,
∵m為m≠1且m≠0的整數(shù),且方程有兩個不相等的整數(shù)根,
∴m=2,
∴拋物線為y=x2-1,
把拋物線y=x2-1向下平移3個單位長度得y=x2-1-3,即y=x2-4.
點評:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.也考查了一元二次方程的定義以及拋物線的幾何變換.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:關于x的一元二次方程mx2-(2m+n)x+m+n=0①.
(1)求證:方程①有兩個實數(shù)根;
(2)求證:方程①有一個實數(shù)根為1;
(3)設方程①的另一個根為x1,若m+n=2,m為正整數(shù)且方程①有兩個不相等的整數(shù)根時,確定關于x的二次函數(shù)y=mx2-(2m+n)x+m+n的解析式;
(4)在(3)的條件下,把Rt△ABC放在坐標系內,其中∠CAB=90°,點A、B的坐標分別為(1,0)、(4,0),BC=5,將△ABC沿x軸向右平移,當點C落在拋物線上時,求△ABC平移的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、已知:關于x的一元二次方程ax2+bx+c=3的一個根為x=2,且二次函數(shù)y=ax2+bx+c的對稱軸是直線x=2,則拋物線的頂點坐標為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:關于x的一元二次方程x2-2(m+1)x+m2=0有兩個整數(shù)根,m<5且m為整數(shù).
(1)求m的值;
(2)當此方程有兩個非零的整數(shù)根時,將關于x的二次函數(shù)y=x2-2(m+1)x+m2的圖象沿x軸向左平移4個單位長度,求平移后的二次函數(shù)圖象的解析式;
(3)當直線y=x+b與(2)中的兩條拋物線有且只有三個交點時,求b的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:關于x的一元二次方程x2-2x+c=0的一個實數(shù)根為3.
(1)求c的值;
(2)二次函數(shù)y=x2-2x+c,當-2<x≤2時,y的取值范圍;
(3)二次函數(shù)y=x2-2x+c與x軸交于點A、B(A左B右),頂點為點C,問:是否存在這樣的點P,以P為位似中心,將△ABC放大為原來的2倍后得到△DEF(即△EDF∽△ABC,相似比為2),使得點D、E恰好在二次函數(shù)上且DE∥AB?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•延慶縣二模)已知:關于x的一元二次方程mx2-(2m+2)x+m-1=0
(1)若此方程有實根,求m的取值范圍;
(2)在(1)的條件下,且m取最小的整數(shù),求此時方程的兩個根;
(3)在(2)的前提下,二次函數(shù)y=mx2-(2m+2)x+m-1與x軸有兩個交點,連接這兩點間的線段,并以這條線段為直徑在x軸的上方作半圓P,設直線l的解析式為y=x+b,若直線l與半圓P只有兩個交點時,求出b的取值范圍.

查看答案和解析>>

同步練習冊答案