已知反比例函數(shù)數(shù)學(xué)公式(k是常數(shù),k≠0),當(dāng)x>0時,y隨x的增大而減小,請寫出符合上述條件的k的一個值:________.

1
分析:由于當(dāng)x>0時,y隨x的增大而減小,根據(jù)反比例函數(shù)的性質(zhì)得到k>0,然后在此范圍內(nèi)任取一值即可.
解答:∵當(dāng)x>0時,y隨x的增大而減小,
∴k>0,
∴k可以取1等.
故答案為1.
點評:本題考查了反比例函數(shù)的性質(zhì):反比例函數(shù)y=(k≠0)的圖象為雙曲線,當(dāng)k>0時,圖象分布在第一、三象限,在每一象限,y隨x的增大而減。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年四川省成都市武侯區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知反比例函數(shù)(m是常數(shù),m≠0),一次函數(shù)y=ax+b(a、b為常數(shù),a≠0),其中一次函數(shù)與x軸,y軸的交點分別是A(-4,0),B(0,2).

(1)求一次函數(shù)的關(guān)系式;

(2)反比例函數(shù)圖象上有一點P滿足:①PA⊥x軸;②PO=(O為坐標(biāo)原點),求反比例函數(shù)的關(guān)系式;

(3)求點P關(guān)于原點的對稱點Q的坐標(biāo),判斷點Q是否在該反比例函數(shù)的圖象上.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年北京市房山區(qū)九年級(上)期末數(shù)學(xué)試卷(解析版) 題型:選擇題

已知反比例函數(shù)(k是常數(shù),且k≠0),x與y的部分對應(yīng)值如表所示,那么m的值等于( )
x-13
y1m

A.-3
B.
C.
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年遼寧省沈陽市中考數(shù)學(xué)模擬試卷(五)(解析版) 題型:解答題

如圖,已知反比例函數(shù)(m是常數(shù),m≠0),一次函數(shù)y=ax+b(a、b為常數(shù),a≠0),其中一次函數(shù)與x軸,y軸的交點分別是A(-4,0),B(0,2).
(1)求一次函數(shù)的關(guān)系式;
(2)反比例函數(shù)圖象上有一點P滿足:①PA⊥x軸;②PO=(O為坐標(biāo)原點),求反比例函數(shù)的關(guān)系式;
(3)求點P關(guān)于原點的對稱點Q的坐標(biāo),判斷點Q是否在該反比例函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年貴州省貴陽市中考數(shù)學(xué)模擬試卷(六)(解析版) 題型:解答題

如圖,已知反比例函數(shù)(m是常數(shù),m≠0),一次函數(shù)y=ax+b(a、b為常數(shù),a≠0),其中一次函數(shù)與x軸,y軸的交點分別是A(-4,0),B(0,2).
(1)求一次函數(shù)的關(guān)系式;
(2)反比例函數(shù)圖象上有一點P滿足:①PA⊥x軸;②PO=(O為坐標(biāo)原點),求反比例函數(shù)的關(guān)系式;
(3)求點P關(guān)于原點的對稱點Q的坐標(biāo),判斷點Q是否在該反比例函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年四川省攀枝花市中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知反比例函數(shù)(m是常數(shù),m≠0),一次函數(shù)y=ax+b(a、b為常數(shù),a≠0),其中一次函數(shù)與x軸,y軸的交點分別是A(-4,0),B(0,2).
(1)求一次函數(shù)的關(guān)系式;
(2)反比例函數(shù)圖象上有一點P滿足:①PA⊥x軸;②PO=(O為坐標(biāo)原點),求反比例函數(shù)的關(guān)系式;
(3)求點P關(guān)于原點的對稱點Q的坐標(biāo),判斷點Q是否在該反比例函數(shù)的圖象上.

查看答案和解析>>

同步練習(xí)冊答案