如果∠a是直角三角形的一個(gè)銳角,且sinα的值是方程數(shù)學(xué)公式的一個(gè)根,那么三角形的另一個(gè)銳角的度數(shù)是


  1. A.
    30°
  2. B.
    45°
  3. C.
    60°
  4. D.
    30°或者60°
B
分析:先求出方程的根,再由sinα的值判斷出α的度數(shù),由直角三角形的特點(diǎn)求出三角形的另一個(gè)銳角的度數(shù)即可.
解答:原方程可化為:,
解得:,
即sinα=
∴銳角a=45°,那么直角三角形的另一個(gè)銳角的度數(shù)是90°-45°=45°.
故選B.
點(diǎn)評(píng):本題考查的是特殊角的三角函數(shù)值及直角三角形的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=ax2(a>0)的圖象上兩點(diǎn)A、B的橫坐標(biāo)分別是-1、2,點(diǎn)O是坐標(biāo)原點(diǎn),如果△AOB是直角三角形,則△OAB的周長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、下列敘述中,正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在半徑為6,圓心角為90°的扇形OAB的
AB
上,有一個(gè)動(dòng)點(diǎn)P,PH⊥OA,垂足為H,△OPH的重心精英家教網(wǎng)為G.
(1)當(dāng)點(diǎn)P在
AB
上運(yùn)動(dòng)時(shí),線段GO、GP、GH中,有無(wú)長(zhǎng)度保持不變的線段?如果有,請(qǐng)指出這樣的線段,并求出相應(yīng)的長(zhǎng)度;
(2)如果△PGH是直角三角形,試求OG:PG:HG的值;
(3)如果△PGH是等腰三角形,試求出線段PH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,△ABC是邊長(zhǎng)3cm的等邊三角形,動(dòng)點(diǎn)P、Q同時(shí)從A、B兩點(diǎn)出發(fā),分別沿AB、BC方向勻速移動(dòng),它們的速度都是1cm/s,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),設(shè)四邊形APQC的面積為y(cm2
(1)求y與t的關(guān)系式;
(2)如果△PBQ是直角三角形,求:四邊形APQC的面積;
(3)是否存在某一時(shí)刻t,使四邊形APQC的面積是△ABC面積的三分之二?如果存在,求出相應(yīng)的t值;不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)M在第一象限,拋物線與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交與點(diǎn)C,O為坐標(biāo)原點(diǎn),如果△ABM是直角三角形,AB=2,OM=
5

(1)求點(diǎn)M的坐標(biāo);
(2)求拋物線y=ax2+bx+c的解析式;
(3)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得△PAC為直角三角形?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案