如圖,在離水面高度為4米的岸上用繩子拉船靠岸,開始時繩子與水面的夾角為30°.
求(1)繩子至少有多長?
(2)若此人以每秒0.5米收繩.問:6秒后船向岸邊大約移動了多少米?(參考數(shù)據(jù):
3
≈1.73
(1)在Rt△CAB中
∵AC=4(米),∠CBA=30°
∴BC=8(米).即:繩子至少有8米.(2分)

(2)在Rt△CAB中應(yīng)用勾股定理得:
AB=
BC2-AC2
=
82-42
=4
3
(1分)
3
≈1.73
∴AB=4
3
≈6.92(米)(1分)
設(shè)經(jīng)過拉繩,小船到達(dá)D點(diǎn),在Rt△CAD中
∵AC=4(米),CD=8-0.5×6=5(米)
∴應(yīng)用勾股定理得:AD=3(米)(2分)
∴DB=AB-AD≈6.92-3=3.92(米)(1分)
答:6秒后船向岸邊大約移動了3.92米(1分).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在距旗桿4米的A處,用測角儀測得旗桿頂端C的仰角為60°,已知測角儀AB的高為1.5米,則旗桿CE的高等于______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=90°,AC=6,∠A的平分線AD=4
3
.求△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,放置在水平桌面上的臺燈的燈臂AB長為30cm,底座厚度為2cm,燈臂與底座構(gòu)成的∠BAD=60°,使用發(fā)現(xiàn),光線最佳時燈罩BC與水平線所成的∠CBF=30°,此時燈罩頂端C與底座AD構(gòu)成的∠CAD=45°.求燈罩C到桌面的高度CE是多少cm(結(jié)果精確到0.1cm,參考數(shù)據(jù)
3
≈1.73).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,為一水庫大壩的橫斷面,壩高h(yuǎn)=6cm,迎水坡AB=10m,斜坡的坡度角為α,則迎水坡的坡度是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

元旦,小美和同學(xué)一起到游樂場游玩.游樂場的大型摩天輪的半徑為20m,勻速旋轉(zhuǎn)1周需要12min.小美乘坐最底部的車廂(離地面約0.5m)開始1周的觀光.請回答下列問題:(參考數(shù)據(jù):
2
≈l.414,
3
≈1.732)
(1)1.5min后小美離地面的高度是______m.(精確到0.1m)
(2)摩天輪啟動______min后,小美離地面的高度將首次達(dá)到10.5m.
(3)小美將有______min連續(xù)保持在離地面10.5m以上的空中.
(4)tmin(0≤t≤6)后小美離地面的高度h是多少?(結(jié)果用t表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,A、B兩城市相距200km.現(xiàn)計劃在這兩座城市間修筑一條高速公路(即線段AB),經(jīng)測量,森林保護(hù)中心P在A城市的北偏東30°和B城市的北偏西45°的方向上,已知森林保護(hù)區(qū)的范圍在以P點(diǎn)為圓心,100km為半徑的圓形區(qū)域內(nèi),請問:計劃修筑的這條高速公路會不會穿越保護(hù)區(qū).為什么?(參考數(shù)據(jù):
3
≈1.732,
2
≈1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,河流兩岸a,b互相平行,C,D是河岸a上間隔50m的兩個電線桿.某人在河岸b上的A處測得∠DAB=32°,然后沿河岸走了100m到達(dá)B處,測得∠CBF=64°,求河流的寬度CF的值?(結(jié)果精確到0.1m).參考數(shù)據(jù):
角度αsinαcosαtanα
32°0.530.850.62
64°0.90.442.05

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

小明(M)和小麗(N)兩人一前一后放風(fēng)箏,結(jié)果風(fēng)箏在空中E處糾纏在一起(如示意圖).若∠ENF=45°,小麗、小明之間的距離與小麗已用的放風(fēng)箏線的長度相等,則∠M的正切值是(  )
A.2+
3
B.2-
3
C.
2
+1
D.
2
-1

查看答案和解析>>

同步練習(xí)冊答案