函數(shù)y=
2x+4
x-1
的自變量x的取值范圍是______.
根據(jù)題意得,2x+4≥0且x-1≠0,
解得x≥-2且x≠1.
故答案為:x≥-2且x≠1.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料,解答下列問題:
求函數(shù)y=
2x+3
x+1
(x>-1)中的y的取值范圍.
解.∵y=
2x+3
x+1
=
2(x+1)+1
x+1
=2+
1
x+1

1
x+1
>0

∴y>2
在高中我們將學習這樣一個重要的不等式:
x+y
2
xy
(x、y為正數(shù));此不等式說明:當正數(shù)x、y的積為定值時,其和有最小值.
例如:求證:x+
1
x
≥2(x>0)
證明:∵
x+
1
x
2
x•
1
x
=1

∴x+
1
x
≥2
利用以上信息,解決以下問題:
(1)求函數(shù):y=
x+1
x-1
中(x>1),y的取值范圍.
(2)若x>0,求代數(shù)式2x+
4
x
的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

函數(shù)y=
2x-4
x
中自變量x的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•永州模擬)函數(shù)y=
2x+4
x-1
的自變量x的取值范圍是
x≥-2且x≠1
x≥-2且x≠1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀以下的例題求解:例:已知x>0,求函數(shù)y=x+
4
x
的最小值.
解:令a=x,b=
4
x
,則有a+b≥2
ab
,得y=x+
4
x
≥2
4
x
=4,當且僅當x=
4
x
時,即x=2時,函數(shù)有最小值,最小值為4.
根據(jù)上面回答下列問題:
①已知x>0,則當x=
6
2
6
2
時,函數(shù)y=2x+
3
x
取到最小值,最小值為
2
6
2
6
;
②用籬笆圍一個面積為100m2的矩形花園,問這個矩形的長、寬各為多少時,所用的籬笆最短,最短的籬笆周長是多少?
③已知x>0,則自變量x取何值時,函數(shù)y=
x
x2-2x+9
取到最大值,最大值為多少?

查看答案和解析>>

同步練習冊答案