如圖,四邊形ABCD是平行四邊形,且AB=10,AD=8,AC⊥BC,求OA的長(zhǎng)及?ABCD的面積.

解:∵AC⊥BC,
∴∠ACB=90°,
∵四邊形ABCD是平行四邊形,
∴AD=BC=8,OA=OCAC,
∵AB=10,BC=8,由勾股定理得:AC==6,
∴OA=3,
∴?ABCD的面積是BC×AC=8×6=48.
答:OA的長(zhǎng)是3,?ABCD的面積是48.
分析:根據(jù)平行四邊形的性質(zhì)得到AD=BC=8,OA=OCAC,根據(jù)勾股定理求出AC的長(zhǎng),根據(jù)平行四邊形的面積公式即可求出平行四邊形ABCD的面積.
點(diǎn)評(píng):本題主要考查對(duì)平行四邊形的性質(zhì),勾股定理等知識(shí)點(diǎn)的理解和掌握,能求出AC的長(zhǎng)度是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線、周長(zhǎng)、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)P,過(guò)點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長(zhǎng)線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案