【題目】某城市出租汽車收費(fèi)標(biāo)準(zhǔn)為:以內(nèi)(含)收費(fèi)元;超出的部分,每千米收費(fèi)元.
(1)寫出車費(fèi)元與行駛路程x(km)之間的函數(shù)關(guān)系式(≥4);
(2)某人乘出租汽車行駛了5 km,應(yīng)付多少車費(fèi);
(3)若某人付了元車費(fèi),那么出租車行駛了多遠(yuǎn).
【答案】(1);(2)11.4元;(3)
【解析】
(1)根據(jù)題意列出函數(shù)關(guān)系式即可,注意自變量的取值范圍是(≥4);
(2)當(dāng)自變量x=5時(shí),代入滿足自變量的函數(shù)式求出y的值即為所求;
(3)付車費(fèi)19.8元,也就是函數(shù)式y(tǒng)=19.8代入函數(shù)式求出相對(duì)應(yīng)x的值.
(1)
答:函數(shù)關(guān)系式是:
(2)時(shí),(元)
答:某人乘坐出租車行駛5應(yīng)付11.4元
(3)時(shí),即,
解得:
答:若某人付了元車費(fèi),那么出租車行駛了
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)為斜邊上的一點(diǎn),以為半徑的與邊交于點(diǎn),與邊交于點(diǎn),連接,且平分.
試判斷與的位置關(guān)系,并說明理由;
若,,求陰影部分的面積(結(jié)果保留).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,點(diǎn)在邊上,點(diǎn)在邊的延長線上,且.
求證:;
將按逆時(shí)針方向至少旋轉(zhuǎn)多少度才能與重合,旋轉(zhuǎn)中心是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】感知:如圖1,在中,D、E分別是AB、AC兩邊的中點(diǎn),延長DE至點(diǎn)F,使,連結(jié)易知≌.
探究:如圖2,AD是的中線,BE交AC于點(diǎn)E,交AD于點(diǎn)F,且,求證:.
應(yīng)用:如圖3,在中,,,,DE是的中位線過點(diǎn)D、E作,分別交邊BC于點(diǎn)F、G,過點(diǎn)A作,分別與FD、GE的延長線交于點(diǎn)M、N,則四邊形MFGN周長C的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在等邊三角形ABC中,點(diǎn)E在AB上,點(diǎn)D在CB的延長線上,且ED=EC.
(1)(特殊情況,探索結(jié)論)
如圖1,當(dāng)點(diǎn)E為AB的中點(diǎn)時(shí),確定線段AE與DB的大小關(guān)系,請你直接寫出結(jié)論:
AE DB(填“>”、“<”或“=”).
(2)(特例啟發(fā),解答題目)
如圖2,當(dāng)點(diǎn)E為AB邊上任意一點(diǎn)時(shí),確定線段AE與DB的大小關(guān)系,請你直接寫出結(jié)論,AE DB(填“>”、“<”或“=”);理由如下,過點(diǎn)E作EF∥BC,交AC于點(diǎn)F.(請你將解答過程完整寫下來).
(3)(拓展結(jié)論,設(shè)計(jì)新題)
在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在線段CB的延長線上,且ED=EC,若△ABC的邊長為1,AE=2,求CD的長.(請你畫出相應(yīng)圖形,并直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子里,裝有四個(gè)分別標(biāo)有數(shù)字1,2,3,4的小球,它們的形狀、大小、質(zhì)地等完全相同.小強(qiáng)先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字為x;放回盒子搖勻后,再由小華隨機(jī)取出一個(gè)小球,記下數(shù)字為y.
(1)用列表法或畫樹狀圖表示出(x,y)的所有可能出現(xiàn)的結(jié)果;
(2)求小強(qiáng)、小華各取一次小球所確定的點(diǎn)(x,y)落在一次函數(shù)圖象上的概率;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D,E分別在邊BC,AC上,且DE∥AB,過點(diǎn)E作EF⊥DE,交BC的延長線于點(diǎn)F,
(1)求∠F的度數(shù);
(2)若CD=5,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸、y軸分別交于點(diǎn)A,B,另一直線與x軸、y軸分別交于點(diǎn)C,D,兩直線相交于點(diǎn)M.
求點(diǎn)M的坐標(biāo);
連接AD,求△AMD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知點(diǎn)D在AB上,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,且M為EC的中點(diǎn).
(1)連接DM并延長交BC于N,求證:CN=AD;
(2)求證:△BMD為等腰直角三角形;
(3)將△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°時(shí)(如圖②所示位置),其它條件不變,△BMD為等腰直角三角形的結(jié)論是否仍成立?若成立,請證明:若不成立,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com