【題目】中國派遣三艘海監(jiān)船在南海保護中國漁民不受菲律賓的侵犯.在雷達顯示圖上,標明了三艘海監(jiān)船的坐標為、、,(單位:海里)三艘海監(jiān)船安裝有相同的探測雷達,雷達的有效探測范圍是半徑為的圓形區(qū)域(只考慮在海平面上的探測).
(1)若在三艘海監(jiān)船組成的區(qū)域內沒有探測盲點,則雷達的有效探測半徑至少為________海里;
(2)某時刻海面上出現(xiàn)一艘菲律賓海警船,在海監(jiān)船測得點位于南偏東方向上,同時在海監(jiān)船測得位于北偏東方向上,海警船正以每小時海里的速度向正西方向移動,我海監(jiān)船立刻向北偏東方向運動進行攔截,問我海監(jiān)船至少以多少速度才能在此方向上攔截到菲律賓海警船?
【答案】(1)50;(2)海里/小時.
【解析】
試題(1)利用點的坐標性質得出CO的長,進而利用直角三角形外心的性質得出答案;
(2)利用方向角畫出圖形,進而利用銳角三角角函數(shù)關系得出即可.
試題解析:(1)∵O(0,0)、B(80,0)、C(80,60),
∴BO=80,BC=60,且∠OBC=90°,
∴CO=,
當雷達在CO的中點位置時,正好位于△BCO外心的位置,
此時在三艘海監(jiān)船組成的△OBC區(qū)域內沒有探測盲點,雷達的有效探測半徑r至少為CO=50(海里);
(2)過點A作AD⊥BC于點D,
設BD=x,由題意得:AD=BD=x,
則tan60°=,
∴CD=,
∴x+=60,
解得:x=90-30,
設船和艦在點E處相遇,海監(jiān)船的速度為v海里/小時,過點E作EF⊥AB于點F,設AF=y,由題意得:
AE=y,BE=2y,
∴,
解得:v=20,
答:我海監(jiān)船B至少以20海里/小時速度才能在此方向上攔截到菲律賓海警船A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,以AB為直徑的⊙O分別交AC、BC于D、E兩點,連接ED
(1)求證:△CDE為等腰三角形;
(2)若CD=3,BC=4,求AD的長和⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:已知點A、B是反比例函數(shù)y=﹣上在第二象限內的分支上的兩個點,點C(0,3),且△ABC滿足AC=BC,∠ACB=90°,則線段AB的長為__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題再現(xiàn):
數(shù)形結合是解決數(shù)學問題的一種重要的思想方法,借助這種方法可將抽象的數(shù)學知識變得直觀, 從而可以幫助我們快速解題,初中數(shù)學里的一些代數(shù)公式,很多都可以通過表示幾何圖形積的方法進行直 觀推導和解釋.
如圖 1,是一個重要公式的幾何解釋,請你寫出這個公式:
如圖 2,在中,,以的三邊長向外作正方形的面積分別為,試猜想之間存在的等量關系,直接寫出結論 .
如圖 3,如果以的三邊長為直徑向外作半圓,那么第問的結論 是否成立?請說明理由.
如圖 4,在中,,三邊分別為,分別以它的三邊為直 徑向上作半圓,求圖 4 中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC在平面直角坐標系中的位置如圖所示.
(1)作出△ABC關于y軸對稱的△A1B1C1;
(2)點P在x軸上,且點P到點A與點C的距離之和最小,直接寫出點P的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,以A(5,1)為圓心,以2個單位長度為半徑的⊙A交x軸于點B、C.解答下列問題:
(1)根據A點坐標建立平面直角坐標系;
(2)將⊙A向左平移____________個單位長度與y軸首次相切,得到⊙A,并畫出⊙A.此時點A的坐標為_____________.
(3)求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是△ABC的中線,E,F(xiàn)分別是AD和AD延長線上的點,且DE=DF,連結BF,CE.下列說法:①△ABD和△ACD面積相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;其中正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com