【題目】如圖,⊙O是△ABC外接圓,直徑AB=12,∠A=2∠B.
(1)∠A= °,∠B= °;
(2)求BC的長(zhǎng)(結(jié)果用根號(hào)表示);
(3)連接OC并延長(zhǎng)到點(diǎn)P,使CP=OC,連接PA,畫出圖形,求證:PA是⊙O的切線.
【答案】(1)∠A=60°,∠B=30°;(2)6;(3)見解析
【解析】分析:(1)、不難看出∠C應(yīng)該是直角,∠A=2∠B,那么這兩個(gè)角的度數(shù)就容易求得了;(2)、直角三角形ABC中,有斜邊AB的長(zhǎng),有三角的度數(shù),BC的值就能求出了;(3)、此題實(shí)際上是證明PA⊥AB,由圖我們不難得出△AOC是等邊三角形,那么就容易證得△ABC≌△OPA,這樣就能求出PA⊥AB了.
詳解:(1)∵∠C=90°,∠A=2∠B, ∴∠A=60°,∠B=30°;
(2)∵AB為直徑, ∴∠ACB=90°, 又∵∠B=30°, ∴AC=AB=65.
∴BC==6;
(3)如圖,∵OP=2OC=AB, ∵∠BAC=60°,OA=OC, ∴△OAC為等邊三角形.
∴∠AOC=60°. 在△ABC和△OPA中,∵AB=OP,∠BAC=∠POA=60°,AC=OA,
∴△ABC≌△OPA. ∴∠OAP=∠ACB=90°. ∴PA是⊙O的切線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△AOB中,∠ABO=90°,OB=4,AB=8,直線y=-x+b分別交OA、AB于點(diǎn)C、D,且ΔBOD的面積是4.
(1)求直線AO的解析式;
(2)求直線CD的解析式;
(3)若點(diǎn)M是x軸上的點(diǎn),且使得點(diǎn)M到點(diǎn)A和點(diǎn)C的距離之和最小,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】紅心食品店想網(wǎng)購(gòu)一種花生包裝袋,在網(wǎng)上搜索了、兩家網(wǎng)店(如圖所示),已知這兩家網(wǎng)店的這種花生包裝袋質(zhì)量相同,請(qǐng)看圖回答下列問題:
(1)假若紅心食品店想購(gòu)買個(gè)花生包裝袋,那么在、兩家網(wǎng)店分別需要花多少錢(用含有的式子表示)?(提示:如需付運(yùn)費(fèi)時(shí),運(yùn)費(fèi)只需付一次,即6元)
(2)紅心食品店打算一次購(gòu)買200個(gè)花生包裝袋,選擇哪家網(wǎng)店更省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線DE上有一點(diǎn)O,過點(diǎn)O在直線DE上方作射線OC,∠COE=140°,將一直角三角板AOB的直角頂點(diǎn)放在點(diǎn)O處,一條直角邊OA在射線OD上,另一邊OB在直線DE上方,將直角三角板繞著點(diǎn)O按每秒10°的速度逆時(shí)針旋轉(zhuǎn)一周,設(shè)旋轉(zhuǎn)時(shí)間為t秒.
(1)當(dāng)直角三角板旋轉(zhuǎn)到如圖2的位置時(shí),OA恰好平分∠COD,求此時(shí)∠BOC的度數(shù);
(2)若射線OC的位置保持不變,在旋轉(zhuǎn)過程中,是否存在某個(gè)時(shí)刻,使得射線OA、OC、OD中的某一條射線是另兩條射線所成夾角的角平分線?若存在,請(qǐng)求出t的取值,若不存在,請(qǐng)說明理由;
(3)若在三角板開始轉(zhuǎn)動(dòng)的同時(shí),射線OC也繞O點(diǎn)以每秒15°的速度逆時(shí)針旋轉(zhuǎn)一周,從旋轉(zhuǎn)開始多長(zhǎng)時(shí)間,射線OC平分∠BOD.直接寫出t的值.(本題中的角均為大于0°且小于180°的角)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知P(1,2).
(1)在平面直角坐標(biāo)系中描出點(diǎn)P(保留畫圖痕跡);
(2)如果將點(diǎn)P向左平移3個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度得到點(diǎn)P',則點(diǎn)P'的坐標(biāo)為 .
(3)點(diǎn)A在坐標(biāo)軸上,若S△OAP=2,直接寫出滿足條件的點(diǎn)A的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為銳角三角形,AD是BC邊上的高,正方形EFMN的一邊MN在邊BC上,頂點(diǎn)E、F分別在AB、AC上,其中BC=24cm,高AD=12cm.
(1)求證:△AEF∽△ABC:
(2)求正方形EFMN的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠B=30°,以A為圓心適當(dāng)長(zhǎng)為半徑畫弧,分別交AC、AB于點(diǎn)M、N,分別以點(diǎn)M、N為圓心,大于MN的長(zhǎng)為半徑畫弧交于點(diǎn)P,作射線AP交BC于點(diǎn)D,再作射線DE交AB于點(diǎn)E,則下列結(jié)論錯(cuò)誤的是( 。
A. ∠ADB=120° B. S△ADC:S△ABC=1:3
C. 若CD=2,則BD=4 D. DE垂直平分AB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將兩塊直角三角尺的頂點(diǎn)疊放在一起.
(1)若∠DCE=25°,求∠ACB的度數(shù).
(2)若∠ACB=140°,求∠DCE的度數(shù).
(3)猜想∠ACB與∠DCE的關(guān)系,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com