【題目】如圖,的周長(zhǎng)為,相交于點(diǎn),,則的周長(zhǎng)為__________

【答案】15

【解析】

根據(jù)平行四邊形的性質(zhì),兩組對(duì)邊分別平行且相等,對(duì)角線相互平分,OEAC可說明EO是線段AC的中垂線,中垂線上任意一點(diǎn)到線段兩端點(diǎn)的距離相等,則AE=CE,再利用平行四邊形ABCD的周長(zhǎng)為30可得AD+CD=15,進(jìn)而可得△DCE的周長(zhǎng).

解:∵四邊形ABCD是平行四邊形,
AB=CD,AD=BC,點(diǎn)O平分BD、AC,即OA=OC,
又∵OEAC
OE是線段AC的中垂線,
AE=CE,
AD=AE+ED=CE+ED,
ABCD的周長(zhǎng)為
CD+AD=15cm,
的周長(zhǎng)= CE+ED +CD=AD+CD=15cm,
故答案為:15

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】射擊隊(duì)為從甲、乙兩名運(yùn)動(dòng)員中選拔一人參加比賽,對(duì)他們進(jìn)行了六次測(cè)試,測(cè)試成績(jī)?nèi)缦卤恚▎挝唬涵h(huán)):

第一次

第二次

第三次

第四次

第五次

第六次

平均成績(jī)

中位數(shù)

10

8

9

8

10

9

9

10

7

10

10

9

8

9.5


(1)完成表中填空①;②;
(2)請(qǐng)計(jì)算甲六次測(cè)試成績(jī)的方差;
(3)若乙六次測(cè)試成績(jī)方差為 ,你認(rèn)為推薦誰參加比賽更合適,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,4),B(4,2),C(3,5)(每個(gè)方格的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度)

①請(qǐng)畫出△A1B1C1 , 使△A1B1C1與△ABC關(guān)于原點(diǎn)對(duì)稱;
②將△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A2B2C2 , 并直接寫出線段OB旋轉(zhuǎn)到OB2掃過圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算或化簡(jiǎn)

(1)|1|+(2)3+(7π)0

(2)3a32a63a12÷a3

(3)(x+y)2+(xy)(x+2y)

(4)(3a+b2)(3ab+2)

(5)(3a+2)2(3a2)2

(6)7862786×172+862

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)完成下面的推理說明:

已知:如圖,,、分別平分.

求證:.

證明:分別平分(已知),

, ( ).

( ),

( ).

( ).

(等式的性質(zhì)).

( ).

(2)說出(1)的推理中運(yùn)用了哪兩個(gè)互逆的真命題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化歸與轉(zhuǎn)化的思想是指在研究解決數(shù)學(xué)問題時(shí)采用某種手段將問題通過變換使之轉(zhuǎn)化,進(jìn)而使問題得到解決。

(1)我們知道可以得到。如果,求的值.

(2)已知 試問多項(xiàng)式a2+b2+c2abacbc的值是否與變量的取值有關(guān)?若有關(guān)請(qǐng)說明理由;若無關(guān)請(qǐng)求出多項(xiàng)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】節(jié)能燈在城市已基本普及,今年某省面向縣級(jí)及農(nóng)村地區(qū)推廣,為相應(yīng)號(hào)召,某商場(chǎng)計(jì)劃用3800元購進(jìn)節(jié)能燈120只,這兩種節(jié)能燈的進(jìn)價(jià)、售價(jià)如下表:

(1)求甲、乙兩種節(jié)能燈各進(jìn)多少只?

(2)全部售完120只節(jié)能燈后,該商場(chǎng)獲利潤(rùn)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,∠ADC的平分線交AB于點(diǎn)E,∠ABC的平分線交CD于點(diǎn)F,求證:四邊形EBFD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】邊長(zhǎng)為整數(shù)的直角三角形,若其兩直角邊邊長(zhǎng)是方程x2-(k+2)x+4k=0的兩根,求k的值,并確定直角三角形三邊之長(zhǎng)。

查看答案和解析>>

同步練習(xí)冊(cè)答案