【題目】函數f(x)=ex(﹣x2+2x+a)在區(qū)間[a,a+1]上單調遞增,則實數a的最大值為 .
【答案】
【解析】解:f(x)=ex(﹣x2+2x+a), f′(x)=ex(﹣x2+a+2),
若f(x)在[a,a+1]上單調遞增,
則﹣x2+a+2≥0在[a,a+1]恒成立,
即a+2≥x2在[a,a+1]恒成立,
①a+1<0即a<﹣1時,y=x2在[a,a+1]遞減,
y=x2的最大值是y=a2 ,
故a+2≥a2 , 解得:a2﹣a﹣2≤0,解得:﹣1<a<2,不合題意,舍;
②﹣1≤a≤0時,y=x2在[a,0)遞減,在(0,a+1]遞增,
故y=x2的最大值是a2或(a+1)2 ,
③a>0時,y=x2在[a,a+1]遞增,y的最大值是(a+1)2 ,
故a+2≥(a+1)2 , 解得:0<a≤ ,
則實數a的最大值為: ,
綜上,a的最大值是 ,
所以答案是: .
【考點精析】認真審題,首先需要了解利用導數研究函數的單調性(一般的,函數的單調性與其導數的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數在這個區(qū)間單調遞增;(2)如果,那么函數在這個區(qū)間單調遞減).
科目:初中數學 來源: 題型:
【題目】已知:如圖,正比例函數y=ax的圖象與反比例函數y= 的圖象交于點A(3,2)
(1)試確定上述正比例函數和反比例函數的表達式;
(2)根據圖象回答,在第一象限內,當x取何值時,反比例函數的值大于正比例函數的值?
(3)點M(m,n)是反比例函數圖象上的一動點,其中0<m<3,過點M作直線MB∥x軸,交y軸于點B;過點A作直線AC∥y軸交x軸于點C,交直線MB于點D.當四邊形OADM的面積為6時,請判斷線段BM與DM的大小關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2017赤峰)已知平行四邊形ABCD.
(1)尺規(guī)作圖:作∠BAD的平分線交直線BC于點E,交DC延長線于點F(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)在(1)的條件下,求證:CE=CF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】農經公司以30元/千克的價格收購一批農產品進行銷售,為了得到日銷售量p(千克)與銷售價格x(元/千克)之間的關系,經過市場調查獲得部分數據如下表:
銷售價格x(元/千克) | 30 | 35 | 40 | 45 | 50 |
日銷售量p(千克) | 600 | 450 | 300 | 150 | 0 |
(1)請你根據表中的數據,用所學過的一次函數、二次函數、反比例函數的知識確定p與x之間的函數表達式;
(2)農經公司應該如何確定這批農產品的銷售價格,才能使日銷售利潤最大?
(3)若農經公司每銷售1千克這種農產品需支出a元(a>0)的相關費用,當40≤x≤45時,農經公司的日獲利的最大值為2430元,求a的值.(日獲利=日銷售利潤﹣日支出費用)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖示,正方形ABCD的頂點A在等腰直角三角形DEF的斜邊EF上,EF與BC相交于點G,連接CF.
①求證:△DAE≌△DCF;
②求證:△ABG∽△CFG.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,橢圓 的右頂點和上頂點分別為點A,B,M是線段AB的中點,且 ..
(1)求橢圓的離心率;
(2)若a=2,四邊形ABCD內接于橢圓,AB∥CD,記直線AD,BC的斜率分別為k1 , k2 , 求證:k1k2為定值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AD=DF=FB,DE∥FG∥BC,且把三角形ABC分成面積為S1 , S2 , S3三部分,則S1:S2:S3=( )
A.1:2:3
B.1:4:9
C.1:3:5
D.無法確定
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知⊙O的半徑為10cm,弦AB∥CD,AB=12cm,CD=16cm,則AB和CD的距離為( )
A.2cm
B.14cm
C.2cm或14cm
D.10cm或20cm
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com