【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(x1,y1),點(diǎn)Q的坐標(biāo)為(x2,y2),且x1x2,y1y2,若P,Q為某個(gè)矩形的兩個(gè)頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點(diǎn)PQ的“相關(guān)矩形”,如圖為點(diǎn)P,Q的“相關(guān)矩形”示意圖.

(1)已知點(diǎn)A的坐標(biāo)為(1,0),

①若點(diǎn)B的坐標(biāo)為(3,1),求點(diǎn)A,B的“相關(guān)矩形”的面積;

②點(diǎn)C在直線x=3上,若點(diǎn)A,C的“相關(guān)矩形”為正方形,求直線AC的表達(dá)式;

(2)正方形RSKT頂點(diǎn)R的坐標(biāo)為(-1,1),K的坐標(biāo)為(2,-2),點(diǎn)M的坐標(biāo)為(m,3),若在正方形RSKT邊上存在一點(diǎn)N,使得點(diǎn)M,N的“相關(guān)矩形”為正方形,求m的取值范圍.

【答案】(1)①2,②y=x﹣1或y=﹣x+1;(2)1≤m≤7或0≤m≤6

【解析】試題分析:

(1)①由相關(guān)矩形的定義可知:要求AB的相關(guān)矩形面積,則AB必為對(duì)角線,利用A、B兩點(diǎn)的坐標(biāo)即可求出該矩形的底與高的長(zhǎng)度,進(jìn)而可求出該矩形的面積;

②由定義可知,AC必為正方形的對(duì)角線,所以ACx軸的夾角必為45°,設(shè)直線AC的解析式為;y=kx+b,由此可知k=±1,再(1,0)代入y=kx+b,即可求出b的值;

(2)由定義可知,MN必為相關(guān)矩形的對(duì)角線,若該相關(guān)矩形的為正方形,即直線MNx軸的夾角為45°,利用直線平行可以求出m的范圍.

試題解析:(1①∵A1,0),B3,1

由定義可知:點(diǎn)A,B相關(guān)矩形的底與高分別為21,

∴點(diǎn)A,B相關(guān)矩形的面積為2×1=2

②由定義可知:AC是點(diǎn)AC相關(guān)矩形的對(duì)角線,

又∵點(diǎn)A,C相關(guān)矩形為正方形

∴直線ACx軸的夾角為45°

設(shè)直線AC的解析為:y=x+my=﹣x+n

把(1,0)分別y=x+m

m=﹣1,

∴直線AC的解析為:y=x﹣1,

把(1,0)代入y=﹣x+n,

n=1,

y=﹣x+1,

綜上所述,若點(diǎn)AC相關(guān)矩形為正方形,直線AC的表達(dá)式為y=x﹣1y=﹣x+1;

2)設(shè)直線MN的解析式為y=kx+b,

∵點(diǎn)M,N相關(guān)矩形為正方形,

∴由定義可知:直線MNx軸的夾角為45°

k=±1,

∵點(diǎn)N在正方形邊上,

∴當(dāng)直線MN與正方形有交點(diǎn)時(shí),點(diǎn)M,N相關(guān)矩形為正方形,

當(dāng)k=1時(shí),

作過(guò)RK的直線與直線MN平行,

將(-1,1)和(2-2)分別代入y=x+b

b=2 b=-4

Mm,3)代入y=x+2y=x-4

m=1 m=7

1≤m≤7,

當(dāng)k=﹣1時(shí),把(-1,-2) (2,1)代入y=﹣x+b,

b=-3 b=3,

Mm,3)代入y=-x-3y=-x+3,

m=0 m=6

0≤m≤6

綜上所述,當(dāng)點(diǎn)MN相關(guān)矩形為正方形時(shí),m的取值范圍是:1≤m≤70≤m≤6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】衡陽(yáng)市城市標(biāo)志來(lái)雁塔坐落在衡陽(yáng)市雁峰公園內(nèi).如圖,為了測(cè)量來(lái)雁塔的高度E處用高為1.5 m的測(cè)角儀AE,測(cè)得塔頂C的仰角為30°,再向塔身前進(jìn)10.4 m,又測(cè)得塔頂C的仰角為60°,求來(lái)雁塔的高度.(結(jié)果精確到0.1 m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(a,b)為第一象限內(nèi)一點(diǎn),且a<b.連結(jié)OA,并以點(diǎn)A為旋轉(zhuǎn)中心把OA逆時(shí)針轉(zhuǎn)90°后得線段BA.若點(diǎn)A、B恰好都在同一反比例函數(shù)的圖象上,則的值等于___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將若干枚棋子平均分成三堆(每堆至少2枚),分別放在左邊、中間、右邊,并按如下順序進(jìn)行操作:

第1次:從右邊堆中拿出 2枚棋子放入中間一堆;

第2次:從左邊一堆中拿出1枚棋子放入中間一堆;

第3次:從中間一堆中拿出幾枚棋子放入右邊一堆,并使右邊一堆的棋子數(shù)為最初的2倍.

(1)操作結(jié)束后,若右邊堆比左邊一堆多15枚棋子,問(wèn)共有_____枚棋子;

(2)通過(guò)計(jì)算得出:無(wú)論最初的棋子數(shù)為多少,按上述方法完成操作后,中間一堆總是剩下_____枚棋子.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù),它與軸交于,且位于原點(diǎn)兩側(cè),與的正半軸交于,頂點(diǎn)軸右側(cè)的直線上,則下列說(shuō)法:① 其中正確的結(jié)論有(

A.①②B.②③C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中華文化,源遠(yuǎn)流長(zhǎng).在文學(xué)方面,《西游記》《三國(guó)演義》《水滸傳》《紅樓夢(mèng)》是我國(guó)古代長(zhǎng)篇小說(shuō)中的典型代表,被稱為四大古典名著.某中學(xué)為了了解學(xué)生對(duì)四大古典名著的閱讀情況,就四大古典名著你讀完了幾部的問(wèn)題在全校學(xué)生中進(jìn)行了抽樣調(diào)查.根據(jù)調(diào)查結(jié)果繪制成如所示的兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中信息解決下列問(wèn)題:

(1) 本次調(diào)查一共抽取了______名學(xué)生;扇形統(tǒng)計(jì)圖中“1所在扇形的圓心角為______

(2) 若該中學(xué)有1000名學(xué)生,請(qǐng)估計(jì)至少閱讀3部四大古典名著的學(xué)生有多少名?

(3) 沒(méi)有讀過(guò)四大名著的兩名學(xué)生準(zhǔn)備從四大古典名著中各自隨機(jī)選擇一部來(lái)閱讀,則他們選中同一名著的概率為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BC是⊙O的直徑,AB交⊙O于點(diǎn)D,E為弧BD的中點(diǎn),CEAB于點(diǎn)H,ACAH

(1) 求證:AC與⊙O相切

(2) CH=3EH,求sinABC的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在平面直角坐標(biāo)系中,矩形OABC的邊OA、OC分別在x軸的正半軸、y軸的正半軸上,且OAOC)的長(zhǎng)是方程的兩個(gè)根.

1)如圖,求點(diǎn)A的坐標(biāo);

2)如圖,將矩形OABC沿某條直線折疊,使點(diǎn)A與點(diǎn)C重合,折痕交CB于點(diǎn)D,交OA于點(diǎn)E.求直線DE的解析式;

3)在(2)的條件下,點(diǎn)P在直線DE上,在直線AC上是否存在點(diǎn)Q,使以點(diǎn)A、BPQ為頂點(diǎn)的四邊形是平行四邊形.若存在,請(qǐng)求出點(diǎn)Q坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小莉的爸爸買了今年七月份去上?词啦⿻(huì)的一張門票,她和哥哥兩人都很想去觀看,可門票只有一張,讀九年級(jí)的哥哥想了一個(gè)辦法,拿了八張撲克牌,將數(shù)字為12,35的四張牌給小莉,將數(shù)字為4,6,7,8的四張牌留給自己,并按如下游戲規(guī)則進(jìn)行:小莉和哥哥從各自的四張牌中隨機(jī)抽出一張,然后將抽出的兩張撲克牌數(shù)字相加,如果和為偶數(shù),則小莉去;如果和為奇數(shù),則哥哥去.

1)請(qǐng)用數(shù)狀圖或列表的方法求小莉去上海看世博會(huì)的概率;

2)哥哥設(shè)計(jì)的游戲規(guī)則公平嗎?若公平,請(qǐng)說(shuō)明理由;若不公平,請(qǐng)你設(shè)計(jì)一種公平的游戲規(guī)則.

查看答案和解析>>

同步練習(xí)冊(cè)答案