如圖:矩形ABCD中,AB=2,BC=5,E、P分別在AD、BC上,且DE=BP=1.
(1)判斷△BEC的形狀,并說明理由?
(2)判斷四邊形EFPH是什么特殊四邊形?并證明你的判斷;
(3)求四邊形EFPH的面積.

(1)△BEC是直角三角形,
理由是:∵矩形ABCD,
∴∠ADC=∠ABP=90°,AD=BC=5,AB=CD=2,
由勾股定理得:CE===
同理BE=2,
∴CE2+BE2=5+20=25,
∵BC2=52=25,
∴BE2+CE2=BC2
∴∠BEC=90°,
∴△BEC是直角三角形.

(2)解:四邊形EFPH為矩形,
證明:∵矩形ABCD,
∴AD=BC,AD∥BC,
∵DE=BP,
∴四邊形DEBP是平行四邊形,
∴BE∥DP,
∵AD=BC,AD∥BC,DE=BP,
∴AE=CP,
∴四邊形AECP是平行四邊形,
∴AP∥CE,
∴四邊形EFPH是平行四邊形,
∵∠BEC=90°,
∴平行四邊形EFPH是矩形.

(3)解:在RT△PCD中FC⊥PD,
由三角形的面積公式得:PD•CF=PC•CD,
∴CF==,
∴EF=CE-CF=-=,
∵PF==,
∴S矩形EFPH=EF•PF=,
答:四邊形EFPH的面積是
分析:(1)根據(jù)矩形性質(zhì)得出CD=2,根據(jù)勾股定理求出CE和BE,求出CE2+BE2的值,求出BC2,根據(jù)勾股定理的逆定理求出即可;
(2)根據(jù)矩形的性質(zhì)和平行四邊形的判定,推出平行四邊形DEBP和AECP,推出EH∥FP,EF∥HP,推出平行四邊形EFPH,根據(jù)矩形的判定推出即可;
(2)根據(jù)三角形的面積公式求出CF,求出EF,根據(jù)勾股定理求出PF,根據(jù)面積公式求出即可.
點評:本題綜合考查了勾股定理及逆定理,矩形、平行四邊形的性質(zhì)和判定,三角形的面積等知識點的運用,主要培養(yǎng)學(xué)生分析問題和解決問題的能力,此題綜合性比較強,題型較好,難度也適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AB=6,BC=8,M是BC的中點,DE⊥AM,E是垂足,則△ABM的面積為
 
;△ADE的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AD=a,AB=b,要使BC邊上至少存在一點P,使△ABP、△APD、△CDP兩兩相似,則a、b間的關(guān)系式一定滿足( 。
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

7、如圖,矩形ABCD中,AE⊥BD,垂足為E,∠DAE=2∠BAE,則∠CAE=
30
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2008•懷柔區(qū)二模)已知如圖,矩形ABCD中,AB=3cm,BC=4cm,E是邊AD上一點,且BE=ED,P是對角線上任意一點,PF⊥BE,PG⊥AD,垂足分別為F、G.則PF+PG的長為
3
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2002•西藏)已知:如圖,矩形ABCD中,E、F是AB邊上兩點,且AF=BE,連結(jié)DE、CF得到梯形EFCD.
求證:梯形EFCD是等腰梯形.

查看答案和解析>>

同步練習(xí)冊答案