精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系中,邊長不等的正方形依次排列,每個正方形都有一個頂點落在函數y=x的圖象上,從左向右第3個正方形中的一個頂點A的坐標為(8,4),陰影三角形部分的面積從左向右依次記為S1、S2、S3、…、Sn , 則Sn的值為 . (用含n的代數式表示,n為正整數)

【答案】24n5
【解析】解:∵函數y=x與x軸的夾角為45°, ∴直線y=x與正方形的邊圍成的三角形是等腰直角三角形,
∵A(8,4),
∴第四個正方形的邊長為8,
第三個正方形的邊長為4,
第二個正方形的邊長為2,
第一個正方形的邊長為1,
…,
第n個正方形的邊長為2n1 ,
由圖可知,S1= ×1×1+ ×(1+2)×2﹣ ×(1+2)×2=
S2= ×4×4+ ×(4+8)×8﹣ ×(4+8)×8=8,
…,
Sn為第2n與第2n﹣1個正方形中的陰影部分,
第2n個正方形的邊長為22n1 , 第2n﹣1個正方形的邊長為22n2 ,
Sn= 22n222n2=24n5
故答案為:24n5

根據直線解析式判斷出直線與x軸的夾角為45°,從而得到直線與正方形的邊圍成的三角形是等腰直角三角形,再根據點A的坐標求出正方形的邊長并得到變化規(guī)律表示出第n個正方形的邊長,然后根據陰影部分的面積等于一個等腰直角三角形的面積加上梯形的面積再減去一個直角三角形的面積列式求解并根據結果的規(guī)律解答即可.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】
(1)解不等式:2x﹣3≤ (x+2)
(2)解方程組:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數y=x與二次函數y=x2+bx的圖象相交于O、A兩點,點A(3,3),點M為拋物線的頂點.

(1)求二次函數的表達式;
(2)長度為2 的線段PQ在線段OA(不包括端點)上滑動,分別過點P、Q作x軸的垂線交拋物線于點P1、Q1 , 求四邊形PQQ1P1面積的最大值;
(3)直線OA上是否存在點E,使得點E關于直線MA的對稱點F滿足SAOF=SAOM?若存在,求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a>0)的對稱軸是過點(1,0)且平行于y軸的直線,若點P(4,0)在該拋物線上,則4a﹣2b+c的值為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】對x,y定義一種新運算T,規(guī)定:T(x,y)= (其中a、b均為非零常數),這里等式右邊是通常的四則運算,例如:T(0,1)= =b.
(1)已知T(1,﹣1)=﹣2,T(4,2)=1. ①求a,b的值;
②若關于m的不等式組 恰好有3個整數解,求實數p的取值范圍;
(2)若T(x,y)=T(y,x)對任意實數x,y都成立(這里T(x,y)和T(y,x)均有意義),則a,b應滿足怎樣的關系式?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,PD切⊙O于點C,交AB的延長線于點D,且∠D=2∠CAD.
(1)求∠D的度數;
(2)若CD=2,求BD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,以O為圓心的兩個同心圓中,大圓與小圓的半徑分別為3cm和1cm,若⊙P與這兩個圓都相切,則圓P的半徑為cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,點D,E,F(xiàn)分別是AB,BC,CA的中點,AH是邊BC上的高.
(1)求證:四邊形ADEF是平行四邊形;
(2)求證:∠DHF=∠DEF.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了解某!罢衽d閱讀工程”的開展情況,教育部門對該校初中生的閱讀情況進行了隨機問卷調查,繪制了如下圖表: 初中生喜愛的文學作品種類調查統(tǒng)計表

種類

小說

散文

傳記

科普

軍事

詩歌

其他

人數

72

8

21

19

15

2

13


根據上述圖表提供的信息,解答下列問題:
(1)喜愛小說的人數占被調查人數的百分比是多少?初中生每天閱讀時間的中位數在哪個時間段內?
(2)將寫讀后感、筆記積累、畫圈點讀等三種方式稱為有記憶閱讀.請估計該,F(xiàn)有的2000名初中生中,能進行有記憶閱讀的人數約是多少?

查看答案和解析>>

同步練習冊答案