(2003•西城區(qū)模擬)已知:拋物線y=ax2+(1-a)x+(5-2a)與x軸負(fù)半軸交于點(diǎn)A,與x軸正半軸交于點(diǎn)B,與y軸交于點(diǎn)C,tan∠CAO-tan∠CBO=2.
(1)當(dāng)拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)當(dāng)線段OB與線段OC長(zhǎng)度相等時(shí),在拋物線的對(duì)稱(chēng)軸上取一點(diǎn)P,以點(diǎn)P為圓心作圓,使它與x軸和直線BD都相切,求點(diǎn)P的坐標(biāo).
【答案】分析:(1)先根據(jù)根與系數(shù)的關(guān)系,表示出OA、OB、OC的長(zhǎng),然后根據(jù)tan∠CAO-tan∠CBO=2即可得出關(guān)于a的方程,進(jìn)而可求出a的值和拋物線的解析式.根據(jù)拋物線的解析式即可求出頂點(diǎn)D的坐標(biāo).
(2)本題可先設(shè)出P點(diǎn)的坐標(biāo),P點(diǎn)的橫坐標(biāo)為拋物線的對(duì)稱(chēng)軸的值,縱坐標(biāo)的絕對(duì)值就是圓的半徑,連接PF后可根據(jù)相似三角形DPF和DEB求出圓的半徑的長(zhǎng),也就能求出P點(diǎn)的坐標(biāo).
解答:解:(1)設(shè)A(x1,0)、B(x2,0)
依題意:x1<0,x2>0
并且x1、x2是關(guān)于x的方程ax2+(1-a)x+(5-2a)=0的兩個(gè)實(shí)數(shù)根
∴△=(1-a)2-4a(5-2a)=9a2-22a+1>0,x1+x2=,
x1x2=<0
①當(dāng)點(diǎn)C在y軸正半軸上時(shí),
∵C(0,5-2a)
∴OC=5-2a>0
∵tan∠CAO-tan∠CBO=2 tan∠CAO=,tan∠CBO=
-=2
∵AO=-x1,OB=x2
=2
=2
=2
解得:a=-1
當(dāng)a=-1時(shí)符合題意
∴y=-x2+2x+7,即頂點(diǎn)D(1,8)
②當(dāng)點(diǎn)C在y軸負(fù)半軸上時(shí),
∵C(0,5-2a)
∴CO=2a-5>0
∵tan∠CAO-tan∠CBO=2tan∠CAO=,tan∠CBO=
=2
∵AO=-x1,OB=x2
=2
=2
=2
解得:a=3
當(dāng)a=3時(shí)符合題意
∴y=3x2-2x-1,頂點(diǎn)D(
綜上所述,拋物線的解析式為y=-x2+2x+7或y=3x2-2x-1,相應(yīng)頂點(diǎn)D的坐標(biāo)為(1,8)或(

(2)當(dāng)拋物線的解析式為y=-x2+2x+7時(shí),B(1+2,0),C(0,7),OB<OC,不合題意;
當(dāng)拋物線的解析式為y=3x2-2x-1時(shí),B(1,0),C(0,-1),OB=CO
∴拋物線y=3x2-2x-1符合題意(6分)
作PE⊥x軸于點(diǎn)E,PF⊥BD于點(diǎn)F.
設(shè)點(diǎn)P的坐標(biāo)為(
頂點(diǎn)D
∵⊙P與x軸、直線BD都相切
∴線段EP與線段FP長(zhǎng)度相等
∵∠PDF=∠BDE,∠DFP=∠DEB
∴△DPF∽△DBE

①當(dāng)點(diǎn)P在第一象限時(shí),m>0
=
∴m=
∴P(
②當(dāng)點(diǎn)P在第四象限時(shí),點(diǎn)P一定在線段DE上,-<m<0
=
∴m=
∴P(,
∴點(diǎn)P的坐標(biāo)為P(,)或P(,).
點(diǎn)評(píng):本題著重考查了一元二次方程根與系數(shù)的關(guān)系、切線的性質(zhì)、三角形相似等知識(shí)點(diǎn),綜合性強(qiáng),考查學(xué)生分類(lèi)討論,數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年中考數(shù)學(xué)考前10日信息題復(fù)習(xí)題精選(6)(解析版) 題型:解答題

(2003•西城區(qū)模擬)某商業(yè)公司為指導(dǎo)某種應(yīng)季商品的生產(chǎn)和銷(xiāo)售,對(duì)三月份至七月份該商品的售價(jià)和成本進(jìn)行了調(diào)研,結(jié)果如下:每件商品的售價(jià)M(元)與時(shí)間t(月)的關(guān)系可用一條線段上的點(diǎn)來(lái)表示(如圖1),每件商品的成本Q(元)與時(shí)間t(月)的關(guān)系可用一條拋物線的一部分上的點(diǎn)來(lái)表示(如圖2).
(說(shuō)明:圖1,圖2中的每個(gè)實(shí)心黑點(diǎn)所對(duì)應(yīng)的縱坐標(biāo)分別指相應(yīng)月份的售價(jià)和成本.)
請(qǐng)你根據(jù)圖象提供的信息回答:
(1)每件商品在3月份出售時(shí)的利潤(rùn)(利潤(rùn)=售價(jià)-成本)是多少元?
(2)求圖2中表示的每件商品的成本Q(元)與時(shí)間t(月)之間的函數(shù)關(guān)系式(不要求寫(xiě)自變量的取值范圍);
(3)你能求出三月份至七月份每件商品的利潤(rùn)W(元)與時(shí)間t(月)之間的函數(shù)關(guān)系式嗎(請(qǐng)寫(xiě)出計(jì)算過(guò)程,不要求寫(xiě)自變量的取值范圍)?若該公司共有此種商品30000件,準(zhǔn)備在一個(gè)月內(nèi)全部售完,請(qǐng)你計(jì)算一下至少可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年北京市西城區(qū)抽樣測(cè)試初三試卷(解析版) 題型:解答題

(2003•西城區(qū)模擬)某商業(yè)公司為指導(dǎo)某種應(yīng)季商品的生產(chǎn)和銷(xiāo)售,對(duì)三月份至七月份該商品的售價(jià)和成本進(jìn)行了調(diào)研,結(jié)果如下:每件商品的售價(jià)M(元)與時(shí)間t(月)的關(guān)系可用一條線段上的點(diǎn)來(lái)表示(如圖1),每件商品的成本Q(元)與時(shí)間t(月)的關(guān)系可用一條拋物線的一部分上的點(diǎn)來(lái)表示(如圖2).
(說(shuō)明:圖1,圖2中的每個(gè)實(shí)心黑點(diǎn)所對(duì)應(yīng)的縱坐標(biāo)分別指相應(yīng)月份的售價(jià)和成本.)
請(qǐng)你根據(jù)圖象提供的信息回答:
(1)每件商品在3月份出售時(shí)的利潤(rùn)(利潤(rùn)=售價(jià)-成本)是多少元?
(2)求圖2中表示的每件商品的成本Q(元)與時(shí)間t(月)之間的函數(shù)關(guān)系式(不要求寫(xiě)自變量的取值范圍);
(3)你能求出三月份至七月份每件商品的利潤(rùn)W(元)與時(shí)間t(月)之間的函數(shù)關(guān)系式嗎(請(qǐng)寫(xiě)出計(jì)算過(guò)程,不要求寫(xiě)自變量的取值范圍)?若該公司共有此種商品30000件,準(zhǔn)備在一個(gè)月內(nèi)全部售完,請(qǐng)你計(jì)算一下至少可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年北京市西城區(qū)抽樣測(cè)試初三試卷(解析版) 題型:填空題

(2003•西城區(qū)模擬)如果正比例函數(shù)y=kx和反比例函數(shù)y=圖象的一個(gè)交點(diǎn)為A(2,4),那么k=    ,m=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年北京市西城區(qū)抽樣測(cè)試初三試卷(解析版) 題型:解答題

(2003•西城區(qū)模擬)計(jì)算:

查看答案和解析>>

同步練習(xí)冊(cè)答案