【題目】在△ABC中,AB=AC,將線段AC繞著點C逆時針旋轉得到線段CD,旋轉角為α

1)如圖,∠BAC=90°,α=45°,試求點D到邊AB,AC的距離的比值;

2)如圖,∠BAC=100°α=20°,連接ADBD,求∠CBD的大。

【答案】1;(230°

【解析】

1)先找出點D的位置,求出BDF∽△CDE,得出比例式,再解直角三角形求出即可;

2)在BC上截取CF=AD,連接DF,求出DCF≌△BAD,根據(jù)全等三角形的性質得出∠ABD=CDF,BD=DF,再求出答案即可.

1)如圖1,

∵∠BAC=90°,AB=AC,

∴∠B=C=45°,

α=45°

∴點D恰好落在BC上,

過點DDEABDFAC,垂足分別為點E,F,則有:∠BED=DFC=90°,

∴△BDF∽△CDE

=,

AB=AC=m,則有:,,

===-1,

即點D到邊AB,AC的距離的比值為;

2)如圖2,在BC邊上截取CF=AD,連接DF,

∵∠BAC=100°AB=AC,

∴∠ABC=BCA=40°,

∵∠ACD=α=20°

∴∠DCB=20°,

又∵AC=DC,

∴∠CAD=80°

∴∠BAD=DCB=20°,

DCFBAD

∴△DCF≌△BADSAS),

∴∠ABD=CDFBD=DF,

∴∠DBC=DFB

∵∠DBC=ABC-ABD=40°-ABD,∠DFB=DCF+CDF=20°+CDF,

20°+CDF=40°-ABD,

2ABD=40°-20°,

即∠ABD=10°,

∴∠CBD=ABC-ABD=40°-10°=30°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠MON=120°,點A,B分別在OM,ON上,且OA=OB=,將射線OM繞點O逆時針旋轉得到OM′,旋轉角為α),作點A關于直線OM′的對稱點C,畫直線BC交于OM′與點D,連接AC,AD.有下列結論:

有下列結論:

①∠BDO + ACD = 90°;

②∠ACB 的大小不會隨著的變化而變化;

③當 時,四邊形OADC為正方形;

面積的最大值為

其中正確的是________________(把你認為正確結論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線ykx+b(k0),經(jīng)過點(6,0),且與坐標軸圍成的三角形的面積是9,與函數(shù)y(x0)的圖象G交于AB兩點.

(1)求直線的表達式;

(2)橫、縱坐標都是整數(shù)的點叫作整點.記圖象G在點AB之間的部分與線段AB圍成的區(qū)域(不含邊界)W

m2時,直接寫出區(qū)域W內的整點的坐標   

若區(qū)域W內恰有3個整數(shù)點,結合函數(shù)圖象,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九年級某數(shù)學小組在學完《直角三角形的邊角關系》這章后,決定用所學的知識設計遮陽篷(要求:遮陽篷既能最大限度地遮擋夏天炎熱的陽光,又能最大限度地使冬天溫暖的陽光射入室內).他們制定了設計方案,并利用課余時間完成了調查和實地測量.調查和測量項目及結果如下表:

項目

內容

課題

設計遮陽篷

測量示意圖

如圖,設計了垂直于墻面AC的遮陽篷CD,AB表示窗戶的高度.榆次區(qū)一年中,夏至這一天的正午時刻,太陽光線DA與遮陽篷CD的夾角∠ADC最大;冬至這一天的正午時刻,太陽光線DB與遮陽篷CD的夾角∠CDB最。

調查數(shù)據(jù)

測量數(shù)據(jù)

根據(jù)上述方案及數(shù)據(jù),求遮陽篷的長.

(結果精確到,參考數(shù)據(jù):,,,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,ABC中,∠C=90°,BC=8cm,ACAB=35,點P從點B出發(fā)沿BC向點C2cm/s的速度移動,點Q從點C出發(fā)沿CA向點A1cm/s的速度移動,如果P、Q分別從BC同時出發(fā):

1)經(jīng)過多少秒后,CPQ的面積為8cm?

2)經(jīng)過多少秒時,以C、P、Q為頂點的三角形恰與ABC相似?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學舉行“漢字聽寫”比賽,賽后整理參賽學生的成績,將學生的成績分為A,B,CD四個等級,并將結果繪制成圖1的條形統(tǒng)計圖和圖2扇形統(tǒng)計圖,但均不完整.請你根據(jù)統(tǒng)計圖解答下列問題:

1)求參加比賽的學生共有多少名?并補全圖1的條形統(tǒng)計圖.

2)在圖2扇形統(tǒng)計圖中,m的值為_____,表示“D等級”的扇形的圓心角為_____度;

3)組委會決定從本次比賽獲得A等級的學生中,選出2名去參加全市中學生“漢字聽寫”大賽.已知A等級學生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學生恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關系可近似的看作一次函數(shù):y=﹣10x+500,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%

1)設小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元)之間的函數(shù)關系式,并確定自變量x的取值范圍.

2)當銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?

3)如果小明想要每月獲得的利潤不低于2000元,那么小明每月的成本最少需要多少元?(成本=進價×銷售量)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,正方形ABCD的頂點BCx軸的正半軸上,反比例函數(shù)在第一象限的圖象經(jīng)過頂點A(mm+3)和CD上的點E,且OB-CE=1。直線lO、E兩點,則tanEOC的值為( )

A. B. 5 C. D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于反比例函數(shù)y,下列說法不正確的是( 。

A.圖象分布在第一、三象限

B.x0時,yx的增大而減小

C.圖象經(jīng)過點(23

D.若點Ax1,y1),Bx2,y2)都在圖象上,且x1x2,則y1y2

查看答案和解析>>

同步練習冊答案