【題目】在△ABC中,AB=AC,將線段AC繞著點C逆時針旋轉得到線段CD,旋轉角為α.
(1)如圖,∠BAC=90°,α=45°,試求點D到邊AB,AC的距離的比值;
(2)如圖,∠BAC=100°,α=20°,連接AD,BD,求∠CBD的大。
【答案】(1);(2)30°
【解析】
(1)先找出點D的位置,求出△BDF∽△CDE,得出比例式,再解直角三角形求出即可;
(2)在BC上截取CF=AD,連接DF,求出△DCF≌△BAD,根據(jù)全等三角形的性質得出∠ABD=∠CDF,BD=DF,再求出答案即可.
(1)如圖1,
∵∠BAC=90°,AB=AC,
∴∠B=∠C=45°,
∵α=45°,
∴點D恰好落在BC上,
過點D作DE⊥AB,DF⊥AC,垂足分別為點E,F,則有:∠BED=∠DFC=90°,
∴△BDF∽△CDE,
∴=,
設AB=AC=m,則有:,,
∴===-1,
即點D到邊AB,AC的距離的比值為;
(2)如圖2,在BC邊上截取CF=AD,連接DF,
∵∠BAC=100°,AB=AC,
∴∠ABC=∠BCA=40°,
∵∠ACD=α=20°,
∴∠DCB=20°,
又∵AC=DC,
∴∠CAD=80°,
∴∠BAD=∠DCB=20°,
在△DCF和△BAD中
∴△DCF≌△BAD(SAS),
∴∠ABD=∠CDF,BD=DF,
∴∠DBC=∠DFB,
∵∠DBC=∠ABC-∠ABD=40°-∠ABD,∠DFB=∠DCF+∠CDF=20°+∠CDF,
∴20°+∠CDF=40°-∠ABD,
∴2∠ABD=40°-20°,
即∠ABD=10°,
∴∠CBD=∠ABC-∠ABD=40°-10°=30°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠MON=120°,點A,B分別在OM,ON上,且OA=OB=,將射線OM繞點O逆時針旋轉得到OM′,旋轉角為α(且),作點A關于直線OM′的對稱點C,畫直線BC交于OM′與點D,連接AC,AD.有下列結論:
有下列結論:
①∠BDO + ∠ACD = 90°;
②∠ACB 的大小不會隨著的變化而變化;
③當 時,四邊形OADC為正方形;
④面積的最大值為.
其中正確的是________________.(把你認為正確結論的序號都填上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線y=kx+b(k<0),經(jīng)過點(6,0),且與坐標軸圍成的三角形的面積是9,與函數(shù)y=(x>0)的圖象G交于A,B兩點.
(1)求直線的表達式;
(2)橫、縱坐標都是整數(shù)的點叫作整點.記圖象G在點A、B之間的部分與線段AB圍成的區(qū)域(不含邊界)為W.
①當m=2時,直接寫出區(qū)域W內的整點的坐標 ;
②若區(qū)域W內恰有3個整數(shù)點,結合函數(shù)圖象,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】九年級某數(shù)學小組在學完《直角三角形的邊角關系》這章后,決定用所學的知識設計遮陽篷(要求:遮陽篷既能最大限度地遮擋夏天炎熱的陽光,又能最大限度地使冬天溫暖的陽光射入室內).他們制定了設計方案,并利用課余時間完成了調查和實地測量.調查和測量項目及結果如下表:
項目 | 內容 | |
課題 | 設計遮陽篷 | |
測量示意圖 | 如圖,設計了垂直于墻面AC的遮陽篷CD,AB表示窗戶的高度.榆次區(qū)一年中,夏至這一天的正午時刻,太陽光線DA與遮陽篷CD的夾角∠ADC最大;冬至這一天的正午時刻,太陽光線DB與遮陽篷CD的夾角∠CDB最。 | |
調查數(shù)據(jù) | ||
測量數(shù)據(jù) | ||
… | … |
根據(jù)上述方案及數(shù)據(jù),求遮陽篷的長.
(結果精確到,參考數(shù)據(jù):,,,,,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,△ABC中,∠C=90°,BC=8cm,AC:AB=3:5,點P從點B出發(fā)沿BC向點C以2cm/s的速度移動,點Q從點C出發(fā)沿CA向點A以1cm/s的速度移動,如果P、Q分別從B、C同時出發(fā):
(1)經(jīng)過多少秒后,△CPQ的面積為8cm?
(2)經(jīng)過多少秒時,以C、P、Q為頂點的三角形恰與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學舉行“漢字聽寫”比賽,賽后整理參賽學生的成績,將學生的成績分為A,B,C,D四個等級,并將結果繪制成圖1的條形統(tǒng)計圖和圖2扇形統(tǒng)計圖,但均不完整.請你根據(jù)統(tǒng)計圖解答下列問題:
(1)求參加比賽的學生共有多少名?并補全圖1的條形統(tǒng)計圖.
(2)在圖2扇形統(tǒng)計圖中,m的值為_____,表示“D等級”的扇形的圓心角為_____度;
(3)組委會決定從本次比賽獲得A等級的學生中,選出2名去參加全市中學生“漢字聽寫”大賽.已知A等級學生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學生恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關系可近似的看作一次函數(shù):y=﹣10x+500,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%.
(1)設小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元)之間的函數(shù)關系式,并確定自變量x的取值范圍.
(2)當銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?
(3)如果小明想要每月獲得的利潤不低于2000元,那么小明每月的成本最少需要多少元?(成本=進價×銷售量)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,正方形ABCD的頂點B,C在x軸的正半軸上,反比例函數(shù)在第一象限的圖象經(jīng)過頂點A(m,m+3)和CD上的點E,且OB-CE=1。直線l過O、E兩點,則tan∠EOC的值為( )
A. B. 5 C. D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于反比例函數(shù)y=,下列說法不正確的是( 。
A.圖象分布在第一、三象限
B.當x>0時,y隨x的增大而減小
C.圖象經(jīng)過點(2,3)
D.若點A(x1,y1),B(x2,y2)都在圖象上,且x1<x2,則y1<y2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com